Metamath Proof Explorer


Theorem renegeulem

Description: Lemma for renegeu and similar. Remove a change in bound variables from renegeulemv . (Contributed by Steven Nguyen, 28-Jan-2023)

Ref Expression
Hypotheses renegeulemv.b φB
renegeulemv.1 φyB+y=A
Assertion renegeulem φ∃!yB+y=A

Proof

Step Hyp Ref Expression
1 renegeulemv.b φB
2 renegeulemv.1 φyB+y=A
3 1 2 renegeulemv φ∃!xB+x=A
4 reurex ∃!xB+x=AxB+x=A
5 3 4 syl φxB+x=A
6 1 5 renegeulemv φ∃!yB+y=A