Metamath Proof Explorer


Theorem reopn

Description: The reals are open with respect to the standard topology. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion reopn topGenran.

Proof

Step Hyp Ref Expression
1 retop topGenran.Top
2 uniretop =topGenran.
3 2 topopn topGenran.ToptopGenran.
4 1 3 ax-mp topGenran.