Metamath Proof Explorer


Theorem repswsymball

Description: All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018)

Ref Expression
Assertion repswsymball WWordVSVW=SrepeatSWi0..^WWi=S

Proof

Step Hyp Ref Expression
1 df-3an WWordVW=Wi0..^WWi=SWWordVW=Wi0..^WWi=S
2 1 a1i WWordVSVWWordVW=Wi0..^WWi=SWWordVW=Wi0..^WWi=S
3 lencl WWordVW0
4 3 anim1ci WWordVSVSVW0
5 repsdf2 SVW0W=SrepeatSWWWordVW=Wi0..^WWi=S
6 4 5 syl WWordVSVW=SrepeatSWWWordVW=Wi0..^WWi=S
7 simpl WWordVSVWWordV
8 eqidd WWordVSVW=W
9 7 8 jca WWordVSVWWordVW=W
10 9 biantrurd WWordVSVi0..^WWi=SWWordVW=Wi0..^WWi=S
11 2 6 10 3bitr4d WWordVSVW=SrepeatSWi0..^WWi=S
12 11 biimpd WWordVSVW=SrepeatSWi0..^WWi=S