Metamath Proof Explorer


Theorem rerpdivcld

Description: Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion rerpdivcld φ A B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 rerpdivcl A B + A B
4 1 2 3 syl2anc φ A B