Metamath Proof Explorer


Theorem rerpdivcld

Description: Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φA
rpgecld.2 φB+
Assertion rerpdivcld φAB

Proof

Step Hyp Ref Expression
1 rpgecld.1 φA
2 rpgecld.2 φB+
3 rerpdivcl AB+AB
4 1 2 3 syl2anc φAB