Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
rescom
Next ⟩
ssres
Metamath Proof Explorer
Ascii
Unicode
Theorem
rescom
Description:
Commutative law for restriction.
(Contributed by
NM
, 27-Mar-1998)
Ref
Expression
Assertion
rescom
⊢
A
↾
B
↾
C
=
A
↾
C
↾
B
Proof
Step
Hyp
Ref
Expression
1
incom
⊢
B
∩
C
=
C
∩
B
2
1
reseq2i
⊢
A
↾
B
∩
C
=
A
↾
C
∩
B
3
resres
⊢
A
↾
B
↾
C
=
A
↾
B
∩
C
4
resres
⊢
A
↾
C
↾
B
=
A
↾
C
∩
B
5
2
3
4
3eqtr4i
⊢
A
↾
B
↾
C
=
A
↾
C
↾
B