Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | rescom | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom | ⊢ ( 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐵 ) | |
2 | 1 | reseq2i | ⊢ ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) |
3 | resres | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵 ∩ 𝐶 ) ) | |
4 | resres | ⊢ ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶 ∩ 𝐵 ) ) | |
5 | 2 3 4 | 3eqtr4i | ⊢ ( ( 𝐴 ↾ 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 ↾ 𝐶 ) ↾ 𝐵 ) |