Metamath Proof Explorer


Theorem rescom

Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998)

Ref Expression
Assertion rescom ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐶 ) ↾ 𝐵 )

Proof

Step Hyp Ref Expression
1 incom ( 𝐵𝐶 ) = ( 𝐶𝐵 )
2 1 reseq2i ( 𝐴 ↾ ( 𝐵𝐶 ) ) = ( 𝐴 ↾ ( 𝐶𝐵 ) )
3 resres ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( 𝐴 ↾ ( 𝐵𝐶 ) )
4 resres ( ( 𝐴𝐶 ) ↾ 𝐵 ) = ( 𝐴 ↾ ( 𝐶𝐵 ) )
5 2 3 4 3eqtr4i ( ( 𝐴𝐵 ) ↾ 𝐶 ) = ( ( 𝐴𝐶 ) ↾ 𝐵 )