Metamath Proof Explorer


Theorem resdm

Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006)

Ref Expression
Assertion resdm RelAAdomA=A

Proof

Step Hyp Ref Expression
1 ssid domAdomA
2 relssres RelAdomAdomAAdomA=A
3 1 2 mpan2 RelAAdomA=A