Metamath Proof Explorer


Theorem resindir

Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion resindir ABC=ACBC

Proof

Step Hyp Ref Expression
1 inindir ABC×V=AC×VBC×V
2 df-res ABC=ABC×V
3 df-res AC=AC×V
4 df-res BC=BC×V
5 3 4 ineq12i ACBC=AC×VBC×V
6 1 2 5 3eqtr4i ABC=ACBC