Metamath Proof Explorer


Theorem resopunitintvd

Description: Restrict continuous function on open unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis resopunitintvd.1 φxA:cn
Assertion resopunitintvd φx01A:01cn

Proof

Step Hyp Ref Expression
1 resopunitintvd.1 φxA:cn
2 ioosscn 01
3 resmpt 01xA01=x01A
4 2 3 ax-mp xA01=x01A
5 rescncf 01xA:cnxA01:01cn
6 2 5 ax-mp xA:cnxA01:01cn
7 1 6 syl φxA01:01cn
8 4 7 eqeltrrid φx01A:01cn