Metamath Proof Explorer


Theorem resclunitintvd

Description: Restrict continuous function on closed unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis resclunitintvd.1 φ x A : cn
Assertion resclunitintvd φ x 0 1 A : 0 1 cn

Proof

Step Hyp Ref Expression
1 resclunitintvd.1 φ x A : cn
2 unitsscn 0 1
3 resmpt 0 1 x A 0 1 = x 0 1 A
4 2 3 ax-mp x A 0 1 = x 0 1 A
5 rescncf 0 1 x A : cn x A 0 1 : 0 1 cn
6 2 5 ax-mp x A : cn x A 0 1 : 0 1 cn
7 1 6 syl φ x A 0 1 : 0 1 cn
8 4 7 eqeltrrid φ x 0 1 A : 0 1 cn