| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resclunitintvd.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 2 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 3 |
|
resmpt |
⊢ ( ( 0 [,] 1 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 0 [,] 1 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 0 [,] 1 ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) |
| 5 |
|
rescncf |
⊢ ( ( 0 [,] 1 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) ) |
| 6 |
2 5
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ 𝐴 ) ↾ ( 0 [,] 1 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 8 |
4 7
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |