Metamath Proof Explorer


Theorem resdvopclptsd

Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses resdvopclptsd.1 ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) )
resdvopclptsd.2 ( ( 𝜑𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ )
resdvopclptsd.3 ( ( 𝜑𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ )
Assertion resdvopclptsd ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 resdvopclptsd.1 ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) )
2 resdvopclptsd.2 ( ( 𝜑𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ )
3 resdvopclptsd.3 ( ( 𝜑𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ )
4 eqid ( 𝑥 ∈ ℂ ↦ 𝐴 ) = ( 𝑥 ∈ ℂ ↦ 𝐴 )
5 0red ( 𝜑 → 0 ∈ ℝ )
6 1red ( 𝜑 → 1 ∈ ℝ )
7 4 2 1 3 5 6 dvmptresicc ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ 𝐵 ) )