Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resdvopclptsd.1 | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) | |
| resdvopclptsd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | ||
| resdvopclptsd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) | ||
| Assertion | resdvopclptsd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdvopclptsd.1 | ⊢ ( 𝜑 → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ 𝐵 ) ) | |
| 2 | resdvopclptsd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 3 | resdvopclptsd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ 𝐴 ) = ( 𝑥 ∈ ℂ ↦ 𝐴 ) | |
| 5 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 6 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 7 | 4 2 1 3 5 6 | dvmptresicc | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 0 (,) 1 ) ↦ 𝐵 ) ) |