Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resdvopclptsd.1 | |- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) ) |
|
resdvopclptsd.2 | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
||
resdvopclptsd.3 | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
||
Assertion | resdvopclptsd | |- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resdvopclptsd.1 | |- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) ) |
|
2 | resdvopclptsd.2 | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
|
3 | resdvopclptsd.3 | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
|
4 | eqid | |- ( x e. CC |-> A ) = ( x e. CC |-> A ) |
|
5 | 0red | |- ( ph -> 0 e. RR ) |
|
6 | 1red | |- ( ph -> 1 e. RR ) |
|
7 | 4 2 1 3 5 6 | dvmptresicc | |- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) ) |