Metamath Proof Explorer


Theorem resdvopclptsd

Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses resdvopclptsd.1
|- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) )
resdvopclptsd.2
|- ( ( ph /\ x e. CC ) -> A e. CC )
resdvopclptsd.3
|- ( ( ph /\ x e. CC ) -> B e. CC )
Assertion resdvopclptsd
|- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) )

Proof

Step Hyp Ref Expression
1 resdvopclptsd.1
 |-  ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) )
2 resdvopclptsd.2
 |-  ( ( ph /\ x e. CC ) -> A e. CC )
3 resdvopclptsd.3
 |-  ( ( ph /\ x e. CC ) -> B e. CC )
4 eqid
 |-  ( x e. CC |-> A ) = ( x e. CC |-> A )
5 0red
 |-  ( ph -> 0 e. RR )
6 1red
 |-  ( ph -> 1 e. RR )
7 4 2 1 3 5 6 dvmptresicc
 |-  ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) )