Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resdvopclptsd.1 | |- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) ) |
|
| resdvopclptsd.2 | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
||
| resdvopclptsd.3 | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
||
| Assertion | resdvopclptsd | |- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdvopclptsd.1 | |- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> B ) ) |
|
| 2 | resdvopclptsd.2 | |- ( ( ph /\ x e. CC ) -> A e. CC ) |
|
| 3 | resdvopclptsd.3 | |- ( ( ph /\ x e. CC ) -> B e. CC ) |
|
| 4 | eqid | |- ( x e. CC |-> A ) = ( x e. CC |-> A ) |
|
| 5 | 0red | |- ( ph -> 0 e. RR ) |
|
| 6 | 1red | |- ( ph -> 1 e. RR ) |
|
| 7 | 4 2 1 3 5 6 | dvmptresicc | |- ( ph -> ( RR _D ( x e. ( 0 [,] 1 ) |-> A ) ) = ( x e. ( 0 (,) 1 ) |-> B ) ) |