Metamath Proof Explorer


Theorem resdvopclptsd

Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses resdvopclptsd.1 φdxAdx=xB
resdvopclptsd.2 φxA
resdvopclptsd.3 φxB
Assertion resdvopclptsd φdx01Adx=x01B

Proof

Step Hyp Ref Expression
1 resdvopclptsd.1 φdxAdx=xB
2 resdvopclptsd.2 φxA
3 resdvopclptsd.3 φxB
4 eqid xA=xA
5 0red φ0
6 1red φ1
7 4 2 1 3 5 6 dvmptresicc φdx01Adx=x01B