Metamath Proof Explorer


Theorem resdvopclptsd

Description: Restrict derivative on unit interval. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses resdvopclptsd.1 φ dx A d x = x B
resdvopclptsd.2 φ x A
resdvopclptsd.3 φ x B
Assertion resdvopclptsd φ dx 0 1 A d x = x 0 1 B

Proof

Step Hyp Ref Expression
1 resdvopclptsd.1 φ dx A d x = x B
2 resdvopclptsd.2 φ x A
3 resdvopclptsd.3 φ x B
4 eqid x A = x A
5 0red φ 0
6 1red φ 1
7 4 2 1 3 5 6 dvmptresicc φ dx 0 1 A d x = x 0 1 B