Metamath Proof Explorer


Theorem lcmineqlem1

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024)

Ref Expression
Hypotheses lcmineqlem1.1 F=01xM11xNMdx
lcmineqlem1.2 φN
lcmineqlem1.3 φM
lcmineqlem1.4 φMN
Assertion lcmineqlem1 φF=01xM1k=0NM1k(NMk)xkdx

Proof

Step Hyp Ref Expression
1 lcmineqlem1.1 F=01xM11xNMdx
2 lcmineqlem1.2 φN
3 lcmineqlem1.3 φM
4 lcmineqlem1.4 φMN
5 elunitcn x01x
6 ax-1cn 1
7 negsub 1x1+x=1x
8 6 7 mpan x1+x=1x
9 8 oveq1d x1+xNM=1xNM
10 9 adantl φx1+xNM=1xNM
11 negcl xx
12 1cnd φ1
13 3 nnnn0d φM0
14 2 nnnn0d φN0
15 nn0sub M0N0MNNM0
16 13 14 15 syl2anc φMNNM0
17 4 16 mpbid φNM0
18 binom 1xNM01+xNM=k=0NM(NMk)1N-M-kxk
19 18 3com23 1NM0x1+xNM=k=0NM(NMk)1N-M-kxk
20 19 3expia 1NM0x1+xNM=k=0NM(NMk)1N-M-kxk
21 12 17 20 syl2anc φx1+xNM=k=0NM(NMk)1N-M-kxk
22 11 21 syl5 φx1+xNM=k=0NM(NMk)1N-M-kxk
23 22 imp φx1+xNM=k=0NM(NMk)1N-M-kxk
24 10 23 eqtr3d φx1xNM=k=0NM(NMk)1N-M-kxk
25 elfzelz k0NMk
26 2 nnzd φN
27 3 nnzd φM
28 zsubcl NMNM
29 26 27 28 syl2anc φNM
30 zsubcl NMkN-M-k
31 29 30 sylan φkN-M-k
32 25 31 sylan2 φk0NMN-M-k
33 1exp N-M-k1N-M-k=1
34 32 33 syl φk0NM1N-M-k=1
35 34 3adant2 φxk0NM1N-M-k=1
36 35 oveq1d φxk0NM1N-M-kxk=1xk
37 11 3ad2ant2 φxk0NMx
38 elfznn0 k0NMk0
39 38 3ad2ant3 φxk0NMk0
40 expcl xk0xk
41 37 39 40 syl2anc φxk0NMxk
42 41 mullidd φxk0NM1xk=xk
43 36 42 eqtrd φxk0NM1N-M-kxk=xk
44 mulm1 x-1x=x
45 44 oveq1d x-1xk=xk
46 45 3ad2ant2 φxk0NM-1xk=xk
47 43 46 eqtr4d φxk0NM1N-M-kxk=-1xk
48 neg1cn 1
49 mulexp 1xk0-1xk=1kxk
50 48 49 mp3an1 xk0-1xk=1kxk
51 38 50 sylan2 xk0NM-1xk=1kxk
52 51 3adant1 φxk0NM-1xk=1kxk
53 47 52 eqtrd φxk0NM1N-M-kxk=1kxk
54 53 oveq2d φxk0NM(NMk)1N-M-kxk=(NMk)1kxk
55 bccl NM0k(NMk)0
56 17 25 55 syl2an φk0NM(NMk)0
57 56 3adant2 φxk0NM(NMk)0
58 57 nn0cnd φxk0NM(NMk)
59 expcl 1k01k
60 48 39 59 sylancr φxk0NM1k
61 expcl xk0xk
62 38 61 sylan2 xk0NMxk
63 62 3adant1 φxk0NMxk
64 58 60 63 mulassd φxk0NM(NMk)1kxk=(NMk)1kxk
65 54 64 eqtr4d φxk0NM(NMk)1N-M-kxk=(NMk)1kxk
66 58 60 mulcomd φxk0NM(NMk)1k=1k(NMk)
67 66 oveq1d φxk0NM(NMk)1kxk=1k(NMk)xk
68 65 67 eqtrd φxk0NM(NMk)1N-M-kxk=1k(NMk)xk
69 68 3expa φxk0NM(NMk)1N-M-kxk=1k(NMk)xk
70 69 sumeq2dv φxk=0NM(NMk)1N-M-kxk=k=0NM1k(NMk)xk
71 24 70 eqtrd φx1xNM=k=0NM1k(NMk)xk
72 5 71 sylan2 φx011xNM=k=0NM1k(NMk)xk
73 72 oveq2d φx01xM11xNM=xM1k=0NM1k(NMk)xk
74 73 itgeq2dv φ01xM11xNMdx=01xM1k=0NM1k(NMk)xkdx
75 1 74 eqtrid φF=01xM1k=0NM1k(NMk)xkdx