Metamath Proof Explorer


Definition df-itg

Description: Define the full Lebesgue integral, for complex-valued functions to RR . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of x ^ 2 from 0 to 1 is S. ( 0 , 1 ) ( x ^ 2 ) _d x = ( 1 / 3 ) . The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg ABdx=k=03ik2xBik/yifxA0yy0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 vx setvarx
3 2 0 1 citg classABdx
4 vk setvark
5 cc0 class0
6 cfz class
7 c3 class3
8 5 7 6 co class03
9 ci classi
10 cexp class^
11 4 cv setvark
12 9 11 10 co classik
13 cmul class×
14 citg2 class2
15 cr class
16 cre class
17 cdiv class÷
18 1 12 17 co classBik
19 18 16 cfv classBik
20 vy setvary
21 2 cv setvarx
22 21 0 wcel wffxA
23 cle class
24 20 cv setvary
25 5 24 23 wbr wff0y
26 22 25 wa wffxA0y
27 26 24 5 cif classifxA0yy0
28 20 19 27 csb classBik/yifxA0yy0
29 2 15 28 cmpt classxBik/yifxA0yy0
30 29 14 cfv class2xBik/yifxA0yy0
31 12 30 13 co classik2xBik/yifxA0yy0
32 8 31 4 csu classk=03ik2xBik/yifxA0yy0
33 3 32 wceq wffABdx=k=03ik2xBik/yifxA0yy0