Metamath Proof Explorer


Definition df-itg2

Description: Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +oo for functions that take the value +oo on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg2 2=f0+∞supx|gdom1gffx=1g*<

Detailed syntax breakdown

Step Hyp Ref Expression
0 citg2 class2
1 vf setvarf
2 cc0 class0
3 cicc class.
4 cpnf class+∞
5 2 4 3 co class0+∞
6 cmap class𝑚
7 cr class
8 5 7 6 co class0+∞
9 vx setvarx
10 vg setvarg
11 citg1 class1
12 11 cdm classdom1
13 10 cv setvarg
14 cle class
15 14 cofr classr
16 1 cv setvarf
17 13 16 15 wbr wffgff
18 9 cv setvarx
19 13 11 cfv class1g
20 18 19 wceq wffx=1g
21 17 20 wa wffgffx=1g
22 21 10 12 wrex wffgdom1gffx=1g
23 22 9 cab classx|gdom1gffx=1g
24 cxr class*
25 clt class<
26 23 24 25 csup classsupx|gdom1gffx=1g*<
27 1 8 26 cmpt classf0+∞supx|gdom1gffx=1g*<
28 0 27 wceq wff2=f0+∞supx|gdom1gffx=1g*<