| Step |
Hyp |
Ref |
Expression |
| 0 |
|
citg2 |
⊢ ∫2 |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cc0 |
⊢ 0 |
| 3 |
|
cicc |
⊢ [,] |
| 4 |
|
cpnf |
⊢ +∞ |
| 5 |
2 4 3
|
co |
⊢ ( 0 [,] +∞ ) |
| 6 |
|
cmap |
⊢ ↑m |
| 7 |
|
cr |
⊢ ℝ |
| 8 |
5 7 6
|
co |
⊢ ( ( 0 [,] +∞ ) ↑m ℝ ) |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
|
vg |
⊢ 𝑔 |
| 11 |
|
citg1 |
⊢ ∫1 |
| 12 |
11
|
cdm |
⊢ dom ∫1 |
| 13 |
10
|
cv |
⊢ 𝑔 |
| 14 |
|
cle |
⊢ ≤ |
| 15 |
14
|
cofr |
⊢ ∘r ≤ |
| 16 |
1
|
cv |
⊢ 𝑓 |
| 17 |
13 16 15
|
wbr |
⊢ 𝑔 ∘r ≤ 𝑓 |
| 18 |
9
|
cv |
⊢ 𝑥 |
| 19 |
13 11
|
cfv |
⊢ ( ∫1 ‘ 𝑔 ) |
| 20 |
18 19
|
wceq |
⊢ 𝑥 = ( ∫1 ‘ 𝑔 ) |
| 21 |
17 20
|
wa |
⊢ ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
| 22 |
21 10 12
|
wrex |
⊢ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
| 23 |
22 9
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
| 24 |
|
cxr |
⊢ ℝ* |
| 25 |
|
clt |
⊢ < |
| 26 |
23 24 25
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) |
| 27 |
1 8 26
|
cmpt |
⊢ ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
| 28 |
0 27
|
wceq |
⊢ ∫2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |