| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cibl |
⊢ 𝐿1 |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cmbf |
⊢ MblFn |
| 3 |
|
vk |
⊢ 𝑘 |
| 4 |
|
cc0 |
⊢ 0 |
| 5 |
|
cfz |
⊢ ... |
| 6 |
|
c3 |
⊢ 3 |
| 7 |
4 6 5
|
co |
⊢ ( 0 ... 3 ) |
| 8 |
|
citg2 |
⊢ ∫2 |
| 9 |
|
vx |
⊢ 𝑥 |
| 10 |
|
cr |
⊢ ℝ |
| 11 |
|
cre |
⊢ ℜ |
| 12 |
1
|
cv |
⊢ 𝑓 |
| 13 |
9
|
cv |
⊢ 𝑥 |
| 14 |
13 12
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
| 15 |
|
cdiv |
⊢ / |
| 16 |
|
ci |
⊢ i |
| 17 |
|
cexp |
⊢ ↑ |
| 18 |
3
|
cv |
⊢ 𝑘 |
| 19 |
16 18 17
|
co |
⊢ ( i ↑ 𝑘 ) |
| 20 |
14 19 15
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) |
| 21 |
20 11
|
cfv |
⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) |
| 22 |
|
vy |
⊢ 𝑦 |
| 23 |
12
|
cdm |
⊢ dom 𝑓 |
| 24 |
13 23
|
wcel |
⊢ 𝑥 ∈ dom 𝑓 |
| 25 |
|
cle |
⊢ ≤ |
| 26 |
22
|
cv |
⊢ 𝑦 |
| 27 |
4 26 25
|
wbr |
⊢ 0 ≤ 𝑦 |
| 28 |
24 27
|
wa |
⊢ ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) |
| 29 |
28 26 4
|
cif |
⊢ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 30 |
22 21 29
|
csb |
⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 31 |
9 10 30
|
cmpt |
⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 32 |
31 8
|
cfv |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 33 |
32 10
|
wcel |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
| 34 |
33 3 7
|
wral |
⊢ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
| 35 |
34 1 2
|
crab |
⊢ { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |
| 36 |
0 35
|
wceq |
⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |