Metamath Proof Explorer


Definition df-itg1

Description: Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion df-itg1 1=fgMblFn|g:rangFinvolg-10xranf0xvolf-1x

Detailed syntax breakdown

Step Hyp Ref Expression
0 citg1 class1
1 vf setvarf
2 vg setvarg
3 cmbf classMblFn
4 2 cv setvarg
5 cr class
6 5 5 4 wf wffg:
7 4 crn classrang
8 cfn classFin
9 7 8 wcel wffrangFin
10 cvol classvol
11 4 ccnv classg-1
12 cc0 class0
13 12 csn class0
14 5 13 cdif class0
15 11 14 cima classg-10
16 15 10 cfv classvolg-10
17 16 5 wcel wffvolg-10
18 6 9 17 w3a wffg:rangFinvolg-10
19 18 2 3 crab classgMblFn|g:rangFinvolg-10
20 vx setvarx
21 1 cv setvarf
22 21 crn classranf
23 22 13 cdif classranf0
24 20 cv setvarx
25 cmul class×
26 21 ccnv classf-1
27 24 csn classx
28 26 27 cima classf-1x
29 28 10 cfv classvolf-1x
30 24 29 25 co classxvolf-1x
31 23 30 20 csu classxranf0xvolf-1x
32 1 19 31 cmpt classfgMblFn|g:rangFinvolg-10xranf0xvolf-1x
33 0 32 wceq wff1=fgMblFn|g:rangFinvolg-10xranf0xvolf-1x