| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem1.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
| 2 |
|
lcmineqlem1.2 |
|- ( ph -> N e. NN ) |
| 3 |
|
lcmineqlem1.3 |
|- ( ph -> M e. NN ) |
| 4 |
|
lcmineqlem1.4 |
|- ( ph -> M <_ N ) |
| 5 |
|
elunitcn |
|- ( x e. ( 0 [,] 1 ) -> x e. CC ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
negsub |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 + -u x ) = ( 1 - x ) ) |
| 8 |
6 7
|
mpan |
|- ( x e. CC -> ( 1 + -u x ) = ( 1 - x ) ) |
| 9 |
8
|
oveq1d |
|- ( x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
| 11 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
| 12 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 13 |
3
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 14 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 15 |
|
nn0sub |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ph -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| 17 |
4 16
|
mpbid |
|- ( ph -> ( N - M ) e. NN0 ) |
| 18 |
|
binom |
|- ( ( 1 e. CC /\ -u x e. CC /\ ( N - M ) e. NN0 ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
| 19 |
18
|
3com23 |
|- ( ( 1 e. CC /\ ( N - M ) e. NN0 /\ -u x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
| 20 |
19
|
3expia |
|- ( ( 1 e. CC /\ ( N - M ) e. NN0 ) -> ( -u x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
| 21 |
12 17 20
|
syl2anc |
|- ( ph -> ( -u x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
| 22 |
11 21
|
syl5 |
|- ( ph -> ( x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
| 23 |
22
|
imp |
|- ( ( ph /\ x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
| 24 |
10 23
|
eqtr3d |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
| 25 |
|
elfzelz |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. ZZ ) |
| 26 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 27 |
3
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 28 |
|
zsubcl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ph -> ( N - M ) e. ZZ ) |
| 30 |
|
zsubcl |
|- ( ( ( N - M ) e. ZZ /\ k e. ZZ ) -> ( ( N - M ) - k ) e. ZZ ) |
| 31 |
29 30
|
sylan |
|- ( ( ph /\ k e. ZZ ) -> ( ( N - M ) - k ) e. ZZ ) |
| 32 |
25 31
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) - k ) e. ZZ ) |
| 33 |
|
1exp |
|- ( ( ( N - M ) - k ) e. ZZ -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
| 34 |
32 33
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
| 35 |
34
|
3adant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
| 36 |
35
|
oveq1d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( 1 x. ( -u x ^ k ) ) ) |
| 37 |
11
|
3ad2ant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> -u x e. CC ) |
| 38 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. NN0 ) |
| 39 |
38
|
3ad2ant3 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> k e. NN0 ) |
| 40 |
|
expcl |
|- ( ( -u x e. CC /\ k e. NN0 ) -> ( -u x ^ k ) e. CC ) |
| 41 |
37 39 40
|
syl2anc |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u x ^ k ) e. CC ) |
| 42 |
41
|
mullidd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 x. ( -u x ^ k ) ) = ( -u x ^ k ) ) |
| 43 |
36 42
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( -u x ^ k ) ) |
| 44 |
|
mulm1 |
|- ( x e. CC -> ( -u 1 x. x ) = -u x ) |
| 45 |
44
|
oveq1d |
|- ( x e. CC -> ( ( -u 1 x. x ) ^ k ) = ( -u x ^ k ) ) |
| 46 |
45
|
3ad2ant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( -u x ^ k ) ) |
| 47 |
43 46
|
eqtr4d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( ( -u 1 x. x ) ^ k ) ) |
| 48 |
|
neg1cn |
|- -u 1 e. CC |
| 49 |
|
mulexp |
|- ( ( -u 1 e. CC /\ x e. CC /\ k e. NN0 ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
| 50 |
48 49
|
mp3an1 |
|- ( ( x e. CC /\ k e. NN0 ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
| 51 |
38 50
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
| 52 |
51
|
3adant1 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
| 53 |
47 52
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( N - M ) _C k ) x. ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) ) |
| 55 |
|
bccl |
|- ( ( ( N - M ) e. NN0 /\ k e. ZZ ) -> ( ( N - M ) _C k ) e. NN0 ) |
| 56 |
17 25 55
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
| 57 |
56
|
3adant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
| 58 |
57
|
nn0cnd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. CC ) |
| 59 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
| 60 |
48 39 59
|
sylancr |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u 1 ^ k ) e. CC ) |
| 61 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
| 62 |
38 61
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( x ^ k ) e. CC ) |
| 63 |
62
|
3adant1 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( x ^ k ) e. CC ) |
| 64 |
58 60 63
|
mulassd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) = ( ( ( N - M ) _C k ) x. ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) ) |
| 65 |
54 64
|
eqtr4d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) ) |
| 66 |
58 60
|
mulcomd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) = ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) ) |
| 67 |
66
|
oveq1d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 68 |
65 67
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 69 |
68
|
3expa |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 70 |
69
|
sumeq2dv |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 71 |
24 70
|
eqtrd |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 72 |
5 71
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
| 73 |
72
|
oveq2d |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) ) |
| 74 |
73
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x ) |
| 75 |
1 74
|
eqtrid |
|- ( ph -> F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x ) |