Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem1.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
2 |
|
lcmineqlem1.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem1.3 |
|- ( ph -> M e. NN ) |
4 |
|
lcmineqlem1.4 |
|- ( ph -> M <_ N ) |
5 |
|
elunitcn |
|- ( x e. ( 0 [,] 1 ) -> x e. CC ) |
6 |
|
ax-1cn |
|- 1 e. CC |
7 |
|
negsub |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 + -u x ) = ( 1 - x ) ) |
8 |
6 7
|
mpan |
|- ( x e. CC -> ( 1 + -u x ) = ( 1 - x ) ) |
9 |
8
|
oveq1d |
|- ( x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = ( ( 1 - x ) ^ ( N - M ) ) ) |
11 |
|
negcl |
|- ( x e. CC -> -u x e. CC ) |
12 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
13 |
3
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
14 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
15 |
|
nn0sub |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
16 |
13 14 15
|
syl2anc |
|- ( ph -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
17 |
4 16
|
mpbid |
|- ( ph -> ( N - M ) e. NN0 ) |
18 |
|
binom |
|- ( ( 1 e. CC /\ -u x e. CC /\ ( N - M ) e. NN0 ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
19 |
18
|
3com23 |
|- ( ( 1 e. CC /\ ( N - M ) e. NN0 /\ -u x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
20 |
19
|
3expia |
|- ( ( 1 e. CC /\ ( N - M ) e. NN0 ) -> ( -u x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
21 |
12 17 20
|
syl2anc |
|- ( ph -> ( -u x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
22 |
11 21
|
syl5 |
|- ( ph -> ( x e. CC -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) ) |
23 |
22
|
imp |
|- ( ( ph /\ x e. CC ) -> ( ( 1 + -u x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
24 |
10 23
|
eqtr3d |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) ) |
25 |
|
elfzelz |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. ZZ ) |
26 |
2
|
nnzd |
|- ( ph -> N e. ZZ ) |
27 |
3
|
nnzd |
|- ( ph -> M e. ZZ ) |
28 |
|
zsubcl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
29 |
26 27 28
|
syl2anc |
|- ( ph -> ( N - M ) e. ZZ ) |
30 |
|
zsubcl |
|- ( ( ( N - M ) e. ZZ /\ k e. ZZ ) -> ( ( N - M ) - k ) e. ZZ ) |
31 |
29 30
|
sylan |
|- ( ( ph /\ k e. ZZ ) -> ( ( N - M ) - k ) e. ZZ ) |
32 |
25 31
|
sylan2 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) - k ) e. ZZ ) |
33 |
|
1exp |
|- ( ( ( N - M ) - k ) e. ZZ -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
34 |
32 33
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
35 |
34
|
3adant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( ( N - M ) - k ) ) = 1 ) |
36 |
35
|
oveq1d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( 1 x. ( -u x ^ k ) ) ) |
37 |
11
|
3ad2ant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> -u x e. CC ) |
38 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. NN0 ) |
39 |
38
|
3ad2ant3 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> k e. NN0 ) |
40 |
|
expcl |
|- ( ( -u x e. CC /\ k e. NN0 ) -> ( -u x ^ k ) e. CC ) |
41 |
37 39 40
|
syl2anc |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u x ^ k ) e. CC ) |
42 |
41
|
mulid2d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 x. ( -u x ^ k ) ) = ( -u x ^ k ) ) |
43 |
36 42
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( -u x ^ k ) ) |
44 |
|
mulm1 |
|- ( x e. CC -> ( -u 1 x. x ) = -u x ) |
45 |
44
|
oveq1d |
|- ( x e. CC -> ( ( -u 1 x. x ) ^ k ) = ( -u x ^ k ) ) |
46 |
45
|
3ad2ant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( -u x ^ k ) ) |
47 |
43 46
|
eqtr4d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( ( -u 1 x. x ) ^ k ) ) |
48 |
|
neg1cn |
|- -u 1 e. CC |
49 |
|
mulexp |
|- ( ( -u 1 e. CC /\ x e. CC /\ k e. NN0 ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
50 |
48 49
|
mp3an1 |
|- ( ( x e. CC /\ k e. NN0 ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
51 |
38 50
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
52 |
51
|
3adant1 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 x. x ) ^ k ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
53 |
47 52
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) = ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) |
54 |
53
|
oveq2d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( N - M ) _C k ) x. ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) ) |
55 |
|
bccl |
|- ( ( ( N - M ) e. NN0 /\ k e. ZZ ) -> ( ( N - M ) _C k ) e. NN0 ) |
56 |
17 25 55
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
57 |
56
|
3adant2 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
58 |
57
|
nn0cnd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. CC ) |
59 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
60 |
48 39 59
|
sylancr |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u 1 ^ k ) e. CC ) |
61 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
62 |
38 61
|
sylan2 |
|- ( ( x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( x ^ k ) e. CC ) |
63 |
62
|
3adant1 |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( x ^ k ) e. CC ) |
64 |
58 60 63
|
mulassd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) = ( ( ( N - M ) _C k ) x. ( ( -u 1 ^ k ) x. ( x ^ k ) ) ) ) |
65 |
54 64
|
eqtr4d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) ) |
66 |
58 60
|
mulcomd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) = ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) ) |
67 |
66
|
oveq1d |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( ( N - M ) _C k ) x. ( -u 1 ^ k ) ) x. ( x ^ k ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
68 |
65 67
|
eqtrd |
|- ( ( ph /\ x e. CC /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
69 |
68
|
3expa |
|- ( ( ( ph /\ x e. CC ) /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
70 |
69
|
sumeq2dv |
|- ( ( ph /\ x e. CC ) -> sum_ k e. ( 0 ... ( N - M ) ) ( ( ( N - M ) _C k ) x. ( ( 1 ^ ( ( N - M ) - k ) ) x. ( -u x ^ k ) ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
71 |
24 70
|
eqtrd |
|- ( ( ph /\ x e. CC ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
72 |
5 71
|
sylan2 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) ^ ( N - M ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) |
73 |
72
|
oveq2d |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) = ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) ) |
74 |
73
|
itgeq2dv |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x ) |
75 |
1 74
|
syl5eq |
|- ( ph -> F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x ) |