Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem2.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
2 |
|
lcmineqlem2.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem2.3 |
|- ( ph -> M e. NN ) |
4 |
|
lcmineqlem2.4 |
|- ( ph -> M <_ N ) |
5 |
1 2 3 4
|
lcmineqlem1 |
|- ( ph -> F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x ) |
6 |
|
eqid |
|- ( 0 [,] 1 ) = ( 0 [,] 1 ) |
7 |
|
fzfid |
|- ( ph -> ( 0 ... ( N - M ) ) e. Fin ) |
8 |
|
0red |
|- ( ph -> 0 e. RR ) |
9 |
|
1red |
|- ( ph -> 1 e. RR ) |
10 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
11 |
|
resmpt |
|- ( ( 0 [,] 1 ) C_ CC -> ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) |` ( 0 [,] 1 ) ) = ( x e. ( 0 [,] 1 ) |-> ( x ^ ( M - 1 ) ) ) ) |
12 |
10 11
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) |` ( 0 [,] 1 ) ) = ( x e. ( 0 [,] 1 ) |-> ( x ^ ( M - 1 ) ) ) |
13 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
14 |
|
expcncf |
|- ( ( M - 1 ) e. NN0 -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
15 |
3 13 14
|
3syl |
|- ( ph -> ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) ) |
16 |
|
rescncf |
|- ( ( 0 [,] 1 ) C_ CC -> ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) ) |
17 |
10 16
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
18 |
15 17
|
syl |
|- ( ph -> ( ( x e. CC |-> ( x ^ ( M - 1 ) ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
19 |
12 18
|
eqeltrrid |
|- ( ph -> ( x e. ( 0 [,] 1 ) |-> ( x ^ ( M - 1 ) ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
20 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. NN0 ) |
21 |
|
neg1cn |
|- -u 1 e. CC |
22 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
23 |
21 22
|
mpan |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. CC ) |
24 |
20 23
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> ( -u 1 ^ k ) e. CC ) |
25 |
24
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u 1 ^ k ) e. CC ) |
26 |
3
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
27 |
2
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
28 |
|
nn0sub |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
29 |
26 27 28
|
syl2anc |
|- ( ph -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
30 |
4 29
|
mpbid |
|- ( ph -> ( N - M ) e. NN0 ) |
31 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
32 |
20 31
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. ZZ ) |
33 |
|
bccl |
|- ( ( ( N - M ) e. NN0 /\ k e. ZZ ) -> ( ( N - M ) _C k ) e. NN0 ) |
34 |
32 33
|
sylan2 |
|- ( ( ( N - M ) e. NN0 /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
35 |
30 34
|
sylan |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. NN0 ) |
36 |
35
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. CC ) |
37 |
25 36
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) e. CC ) |
38 |
|
resmpt |
|- ( ( 0 [,] 1 ) C_ CC -> ( ( x e. CC |-> ( x ^ k ) ) |` ( 0 [,] 1 ) ) = ( x e. ( 0 [,] 1 ) |-> ( x ^ k ) ) ) |
39 |
10 38
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ k ) ) |` ( 0 [,] 1 ) ) = ( x e. ( 0 [,] 1 ) |-> ( x ^ k ) ) |
40 |
|
expcncf |
|- ( k e. NN0 -> ( x e. CC |-> ( x ^ k ) ) e. ( CC -cn-> CC ) ) |
41 |
20 40
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> ( x e. CC |-> ( x ^ k ) ) e. ( CC -cn-> CC ) ) |
42 |
|
rescncf |
|- ( ( 0 [,] 1 ) C_ CC -> ( ( x e. CC |-> ( x ^ k ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ k ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) ) |
43 |
10 42
|
ax-mp |
|- ( ( x e. CC |-> ( x ^ k ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ k ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
44 |
41 43
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> ( ( x e. CC |-> ( x ^ k ) ) |` ( 0 [,] 1 ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
45 |
39 44
|
eqeltrrid |
|- ( k e. ( 0 ... ( N - M ) ) -> ( x e. ( 0 [,] 1 ) |-> ( x ^ k ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( x e. ( 0 [,] 1 ) |-> ( x ^ k ) ) e. ( ( 0 [,] 1 ) -cn-> CC ) ) |
47 |
6 7 8 9 19 37 46
|
3factsumint |
|- ( ph -> S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( x ^ k ) ) ) _d x = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) ) |
48 |
5 47
|
eqtrd |
|- ( ph -> F = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) ) |