Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem3.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
2 |
|
lcmineqlem3.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem3.3 |
|- ( ph -> M e. NN ) |
4 |
|
lcmineqlem3.4 |
|- ( ph -> M <_ N ) |
5 |
1 2 3 4
|
lcmineqlem2 |
|- ( ph -> F = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) ) |
6 |
|
elunitcn |
|- ( x e. ( 0 [,] 1 ) -> x e. CC ) |
7 |
6
|
3ad2ant3 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) /\ x e. ( 0 [,] 1 ) ) -> x e. CC ) |
8 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. NN0 ) |
9 |
8
|
3ad2ant2 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) /\ x e. ( 0 [,] 1 ) ) -> k e. NN0 ) |
10 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
11 |
3 10
|
syl |
|- ( ph -> ( M - 1 ) e. NN0 ) |
12 |
11
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) /\ x e. ( 0 [,] 1 ) ) -> ( M - 1 ) e. NN0 ) |
13 |
7 9 12
|
expaddd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) /\ x e. ( 0 [,] 1 ) ) -> ( x ^ ( ( M - 1 ) + k ) ) = ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) ) |
14 |
13
|
3expa |
|- ( ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) /\ x e. ( 0 [,] 1 ) ) -> ( x ^ ( ( M - 1 ) + k ) ) = ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) ) |
15 |
14
|
itgeq2dv |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) |
16 |
15
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) ) |
17 |
16
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( x ^ k ) ) _d x ) ) |
18 |
|
0red |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> 0 e. RR ) |
19 |
|
1red |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> 1 e. RR ) |
20 |
|
0le1 |
|- 0 <_ 1 |
21 |
20
|
a1i |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> 0 <_ 1 ) |
22 |
11
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M - 1 ) e. NN0 ) |
23 |
8
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> k e. NN0 ) |
24 |
22 23
|
nn0addcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( M - 1 ) + k ) e. NN0 ) |
25 |
18 19 21 24
|
itgpowd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x = ( ( ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) - ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) ) / ( ( ( M - 1 ) + k ) + 1 ) ) ) |
26 |
3
|
nncnd |
|- ( ph -> M e. CC ) |
27 |
26
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> M e. CC ) |
28 |
|
1cnd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> 1 e. CC ) |
29 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
30 |
8 29
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. CC ) |
31 |
30
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> k e. CC ) |
32 |
27 28 31
|
nppcand |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( M - 1 ) + k ) + 1 ) = ( M + k ) ) |
33 |
32
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) = ( 1 ^ ( M + k ) ) ) |
34 |
32
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) = ( 0 ^ ( M + k ) ) ) |
35 |
33 34
|
oveq12d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) - ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) ) = ( ( 1 ^ ( M + k ) ) - ( 0 ^ ( M + k ) ) ) ) |
36 |
3
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> M e. NN ) |
37 |
|
nnnn0addcl |
|- ( ( M e. NN /\ k e. NN0 ) -> ( M + k ) e. NN ) |
38 |
36 23 37
|
syl2anc |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) e. NN ) |
39 |
38
|
nnzd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) e. ZZ ) |
40 |
|
1exp |
|- ( ( M + k ) e. ZZ -> ( 1 ^ ( M + k ) ) = 1 ) |
41 |
39 40
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 ^ ( M + k ) ) = 1 ) |
42 |
|
0exp |
|- ( ( M + k ) e. NN -> ( 0 ^ ( M + k ) ) = 0 ) |
43 |
38 42
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 0 ^ ( M + k ) ) = 0 ) |
44 |
41 43
|
oveq12d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( M + k ) ) - ( 0 ^ ( M + k ) ) ) = ( 1 - 0 ) ) |
45 |
35 44
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) - ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) ) = ( 1 - 0 ) ) |
46 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
47 |
45 46
|
eqtrdi |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) - ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) ) = 1 ) |
48 |
47 32
|
oveq12d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( 1 ^ ( ( ( M - 1 ) + k ) + 1 ) ) - ( 0 ^ ( ( ( M - 1 ) + k ) + 1 ) ) ) / ( ( ( M - 1 ) + k ) + 1 ) ) = ( 1 / ( M + k ) ) ) |
49 |
25 48
|
eqtrd |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x = ( 1 / ( M + k ) ) ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) |
51 |
50
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. S. ( 0 [,] 1 ) ( x ^ ( ( M - 1 ) + k ) ) _d x ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) |
52 |
5 17 51
|
3eqtr2d |
|- ( ph -> F = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) |