Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem3.1 |
|
2 |
|
lcmineqlem3.2 |
|
3 |
|
lcmineqlem3.3 |
|
4 |
|
lcmineqlem3.4 |
|
5 |
1 2 3 4
|
lcmineqlem2 |
|
6 |
|
elunitcn |
|
7 |
6
|
3ad2ant3 |
|
8 |
|
elfznn0 |
|
9 |
8
|
3ad2ant2 |
|
10 |
|
nnm1nn0 |
|
11 |
3 10
|
syl |
|
12 |
11
|
3ad2ant1 |
|
13 |
7 9 12
|
expaddd |
|
14 |
13
|
3expa |
|
15 |
14
|
itgeq2dv |
|
16 |
15
|
oveq2d |
|
17 |
16
|
sumeq2dv |
|
18 |
|
0red |
|
19 |
|
1red |
|
20 |
|
0le1 |
|
21 |
20
|
a1i |
|
22 |
11
|
adantr |
|
23 |
8
|
adantl |
|
24 |
22 23
|
nn0addcld |
|
25 |
18 19 21 24
|
itgpowd |
|
26 |
3
|
nncnd |
|
27 |
26
|
adantr |
|
28 |
|
1cnd |
|
29 |
|
nn0cn |
|
30 |
8 29
|
syl |
|
31 |
30
|
adantl |
|
32 |
27 28 31
|
nppcand |
|
33 |
32
|
oveq2d |
|
34 |
32
|
oveq2d |
|
35 |
33 34
|
oveq12d |
|
36 |
3
|
adantr |
|
37 |
|
nnnn0addcl |
|
38 |
36 23 37
|
syl2anc |
|
39 |
38
|
nnzd |
|
40 |
|
1exp |
|
41 |
39 40
|
syl |
|
42 |
|
0exp |
|
43 |
38 42
|
syl |
|
44 |
41 43
|
oveq12d |
|
45 |
35 44
|
eqtrd |
|
46 |
|
1m0e1 |
|
47 |
45 46
|
eqtrdi |
|
48 |
47 32
|
oveq12d |
|
49 |
25 48
|
eqtrd |
|
50 |
49
|
oveq2d |
|
51 |
50
|
sumeq2dv |
|
52 |
5 17 51
|
3eqtr2d |
|