Metamath Proof Explorer


Theorem lcmineqlem4

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 . (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem4.1 φ N
lcmineqlem4.2 φ M
lcmineqlem4.3 φ M N
lcmineqlem4.4 φ K 0 N M
Assertion lcmineqlem4 φ lcm _ 1 N M + K

Proof

Step Hyp Ref Expression
1 lcmineqlem4.1 φ N
2 lcmineqlem4.2 φ M
3 lcmineqlem4.3 φ M N
4 lcmineqlem4.4 φ K 0 N M
5 breq1 k = M + K k lcm _ 1 N M + K lcm _ 1 N
6 fzssz 1 N
7 fzfi 1 N Fin
8 6 7 pm3.2i 1 N 1 N Fin
9 8 a1i φ 1 N 1 N Fin
10 dvdslcmf 1 N 1 N Fin k 1 N k lcm _ 1 N
11 9 10 syl φ k 1 N k lcm _ 1 N
12 1zzd φ 1
13 2 nnzd φ M
14 0zd φ 0
15 1 nnzd φ N
16 15 13 zsubcld φ N M
17 2 nnred φ M
18 17 leidd φ M M
19 fznn M M 1 M M M M
20 13 19 syl φ M 1 M M M M
21 2 18 20 mpbir2and φ M 1 M
22 1cnd φ 1
23 22 addid1d φ 1 + 0 = 1
24 23 eqcomd φ 1 = 1 + 0
25 1 nncnd φ N
26 2 nncnd φ M
27 25 26 npcand φ N - M + M = N
28 eqcom N - M + M = N N = N - M + M
29 28 a1i φ N - M + M = N N = N - M + M
30 25 26 jca φ N M
31 subcl N M N M
32 30 31 syl φ N M
33 32 26 jca φ N M M
34 addcom N M M N - M + M = M + N - M
35 33 34 syl φ N - M + M = M + N - M
36 eqeq2 N - M + M = M + N - M N = N - M + M N = M + N - M
37 35 36 syl φ N = N - M + M N = M + N - M
38 29 37 bitrd φ N - M + M = N N = M + N - M
39 38 pm5.74i φ N - M + M = N φ N = M + N - M
40 27 39 mpbi φ N = M + N - M
41 12 13 14 16 21 4 24 40 fzadd2d φ M + K 1 N
42 5 11 41 rspcdva φ M + K lcm _ 1 N
43 fz1ssnn 1 N
44 43 7 pm3.2i 1 N 1 N Fin
45 lcmfnncl 1 N 1 N Fin lcm _ 1 N
46 44 45 ax-mp lcm _ 1 N
47 46 a1i φ lcm _ 1 N
48 elfznn0 K 0 N M K 0
49 4 48 syl φ K 0
50 nnnn0addcl M K 0 M + K
51 2 49 50 syl2anc φ M + K
52 nndivdvds lcm _ 1 N M + K M + K lcm _ 1 N lcm _ 1 N M + K
53 47 51 52 syl2anc φ M + K lcm _ 1 N lcm _ 1 N M + K
54 42 53 mpbid φ lcm _ 1 N M + K
55 54 nnzd φ lcm _ 1 N M + K