| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem4.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
lcmineqlem4.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
lcmineqlem4.3 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 4 |
|
lcmineqlem4.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑀 + 𝐾 ) → ( 𝑘 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ ( 𝑀 + 𝐾 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) ) |
| 6 |
|
fzssz |
⊢ ( 1 ... 𝑁 ) ⊆ ℤ |
| 7 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
| 8 |
6 7
|
pm3.2i |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) ) |
| 10 |
|
dvdslcmf |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℤ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 12 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 13 |
2
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 14 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 15 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 16 |
15 13
|
zsubcld |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℤ ) |
| 17 |
2
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 18 |
17
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
| 19 |
|
fznn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≤ 𝑀 ) ) ) |
| 20 |
13 19
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≤ 𝑀 ) ) ) |
| 21 |
2 18 20
|
mpbir2and |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
| 22 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 23 |
22
|
addridd |
⊢ ( 𝜑 → ( 1 + 0 ) = 1 ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 1 + 0 ) ) |
| 25 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 26 |
2
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 27 |
25 26
|
npcand |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) |
| 28 |
|
eqcom |
⊢ ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ↔ 𝑁 = ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ↔ 𝑁 = ( ( 𝑁 − 𝑀 ) + 𝑀 ) ) ) |
| 30 |
25 26
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 31 |
|
subcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 − 𝑀 ) ∈ ℂ ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℂ ) |
| 33 |
32 26
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
| 34 |
|
addcom |
⊢ ( ( ( 𝑁 − 𝑀 ) ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) |
| 36 |
|
eqeq2 |
⊢ ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) = ( 𝑀 + ( 𝑁 − 𝑀 ) ) → ( 𝑁 = ( ( 𝑁 − 𝑀 ) + 𝑀 ) ↔ 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ( 𝑁 = ( ( 𝑁 − 𝑀 ) + 𝑀 ) ↔ 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 38 |
29 37
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ↔ 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 39 |
38
|
pm5.74i |
⊢ ( ( 𝜑 → ( ( 𝑁 − 𝑀 ) + 𝑀 ) = 𝑁 ) ↔ ( 𝜑 → 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) ) |
| 40 |
27 39
|
mpbi |
⊢ ( 𝜑 → 𝑁 = ( 𝑀 + ( 𝑁 − 𝑀 ) ) ) |
| 41 |
12 13 14 16 21 4 24 40
|
fzadd2d |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ( 1 ... 𝑁 ) ) |
| 42 |
5 11 41
|
rspcdva |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ) |
| 43 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 44 |
43 7
|
pm3.2i |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) |
| 45 |
|
lcmfnncl |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
| 46 |
44 45
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ) |
| 48 |
|
elfznn0 |
⊢ ( 𝐾 ∈ ( 0 ... ( 𝑁 − 𝑀 ) ) → 𝐾 ∈ ℕ0 ) |
| 49 |
4 48
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 50 |
|
nnnn0addcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 + 𝐾 ) ∈ ℕ ) |
| 51 |
2 49 50
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℕ ) |
| 52 |
|
nndivdvds |
⊢ ( ( ( lcm ‘ ( 1 ... 𝑁 ) ) ∈ ℕ ∧ ( 𝑀 + 𝐾 ) ∈ ℕ ) → ( ( 𝑀 + 𝐾 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 + 𝐾 ) ) ∈ ℕ ) ) |
| 53 |
47 51 52
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 + 𝐾 ) ∥ ( lcm ‘ ( 1 ... 𝑁 ) ) ↔ ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 + 𝐾 ) ) ∈ ℕ ) ) |
| 54 |
42 53
|
mpbid |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 + 𝐾 ) ) ∈ ℕ ) |
| 55 |
54
|
nnzd |
⊢ ( 𝜑 → ( ( lcm ‘ ( 1 ... 𝑁 ) ) / ( 𝑀 + 𝐾 ) ) ∈ ℤ ) |