| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem5.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
lcmineqlem5.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
lcmineqlem5.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 4 |
|
lcmineqlem5.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 5 |
3 4
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 6 |
1 2 5
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 7 |
1 2
|
mulcomd |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) ) |
| 9 |
6 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) ) |
| 10 |
2 1 5
|
mulassd |
⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) ) |
| 11 |
9 10
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) ) |
| 12 |
1 3 4
|
divrecd |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( 𝐵 · ( 𝐴 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) ) |