Metamath Proof Explorer


Theorem lcmineqlem5

Description: Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem5.1 ( 𝜑𝐴 ∈ ℂ )
lcmineqlem5.2 ( 𝜑𝐵 ∈ ℂ )
lcmineqlem5.3 ( 𝜑𝐶 ∈ ℂ )
lcmineqlem5.4 ( 𝜑𝐶 ≠ 0 )
Assertion lcmineqlem5 ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 lcmineqlem5.1 ( 𝜑𝐴 ∈ ℂ )
2 lcmineqlem5.2 ( 𝜑𝐵 ∈ ℂ )
3 lcmineqlem5.3 ( 𝜑𝐶 ∈ ℂ )
4 lcmineqlem5.4 ( 𝜑𝐶 ≠ 0 )
5 3 4 reccld ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ )
6 1 2 5 mulassd ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) )
7 1 2 mulcomd ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
8 7 oveq1d ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) )
9 6 8 eqtr3d ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) )
10 2 1 5 mulassd ( 𝜑 → ( ( 𝐵 · 𝐴 ) · ( 1 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) )
11 9 10 eqtrd ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) )
12 1 3 4 divrecd ( 𝜑 → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) )
13 12 oveq2d ( 𝜑 → ( 𝐵 · ( 𝐴 / 𝐶 ) ) = ( 𝐵 · ( 𝐴 · ( 1 / 𝐶 ) ) ) )
14 11 13 eqtr4d ( 𝜑 → ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝐵 · ( 𝐴 / 𝐶 ) ) )