Metamath Proof Explorer


Theorem lcmineqlem5

Description: Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem5.1
|- ( ph -> A e. CC )
lcmineqlem5.2
|- ( ph -> B e. CC )
lcmineqlem5.3
|- ( ph -> C e. CC )
lcmineqlem5.4
|- ( ph -> C =/= 0 )
Assertion lcmineqlem5
|- ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( B x. ( A / C ) ) )

Proof

Step Hyp Ref Expression
1 lcmineqlem5.1
 |-  ( ph -> A e. CC )
2 lcmineqlem5.2
 |-  ( ph -> B e. CC )
3 lcmineqlem5.3
 |-  ( ph -> C e. CC )
4 lcmineqlem5.4
 |-  ( ph -> C =/= 0 )
5 3 4 reccld
 |-  ( ph -> ( 1 / C ) e. CC )
6 1 2 5 mulassd
 |-  ( ph -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) )
7 1 2 mulcomd
 |-  ( ph -> ( A x. B ) = ( B x. A ) )
8 7 oveq1d
 |-  ( ph -> ( ( A x. B ) x. ( 1 / C ) ) = ( ( B x. A ) x. ( 1 / C ) ) )
9 6 8 eqtr3d
 |-  ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( ( B x. A ) x. ( 1 / C ) ) )
10 2 1 5 mulassd
 |-  ( ph -> ( ( B x. A ) x. ( 1 / C ) ) = ( B x. ( A x. ( 1 / C ) ) ) )
11 9 10 eqtrd
 |-  ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( B x. ( A x. ( 1 / C ) ) ) )
12 1 3 4 divrecd
 |-  ( ph -> ( A / C ) = ( A x. ( 1 / C ) ) )
13 12 oveq2d
 |-  ( ph -> ( B x. ( A / C ) ) = ( B x. ( A x. ( 1 / C ) ) ) )
14 11 13 eqtr4d
 |-  ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( B x. ( A / C ) ) )