Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem5.1 |
|- ( ph -> A e. CC ) |
2 |
|
lcmineqlem5.2 |
|- ( ph -> B e. CC ) |
3 |
|
lcmineqlem5.3 |
|- ( ph -> C e. CC ) |
4 |
|
lcmineqlem5.4 |
|- ( ph -> C =/= 0 ) |
5 |
3 4
|
reccld |
|- ( ph -> ( 1 / C ) e. CC ) |
6 |
1 2 5
|
mulassd |
|- ( ph -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
7 |
1 2
|
mulcomd |
|- ( ph -> ( A x. B ) = ( B x. A ) ) |
8 |
7
|
oveq1d |
|- ( ph -> ( ( A x. B ) x. ( 1 / C ) ) = ( ( B x. A ) x. ( 1 / C ) ) ) |
9 |
6 8
|
eqtr3d |
|- ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( ( B x. A ) x. ( 1 / C ) ) ) |
10 |
2 1 5
|
mulassd |
|- ( ph -> ( ( B x. A ) x. ( 1 / C ) ) = ( B x. ( A x. ( 1 / C ) ) ) ) |
11 |
9 10
|
eqtrd |
|- ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( B x. ( A x. ( 1 / C ) ) ) ) |
12 |
1 3 4
|
divrecd |
|- ( ph -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( B x. ( A / C ) ) = ( B x. ( A x. ( 1 / C ) ) ) ) |
14 |
11 13
|
eqtr4d |
|- ( ph -> ( A x. ( B x. ( 1 / C ) ) ) = ( B x. ( A / C ) ) ) |