Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem6.1 |
|- F = S. ( 0 [,] 1 ) ( ( x ^ ( M - 1 ) ) x. ( ( 1 - x ) ^ ( N - M ) ) ) _d x |
2 |
|
lcmineqlem6.2 |
|- ( ph -> N e. NN ) |
3 |
|
lcmineqlem6.3 |
|- ( ph -> M e. NN ) |
4 |
|
lcmineqlem6.4 |
|- ( ph -> M <_ N ) |
5 |
1 2 3 4
|
lcmineqlem3 |
|- ( ph -> F = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) |
6 |
5
|
oveq2d |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) = ( ( _lcm ` ( 1 ... N ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) ) |
7 |
|
fzfid |
|- ( ph -> ( 0 ... ( N - M ) ) e. Fin ) |
8 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
9 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
10 |
8 9
|
pm3.2i |
|- ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) |
11 |
|
lcmfnncl |
|- ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
12 |
10 11
|
ax-mp |
|- ( _lcm ` ( 1 ... N ) ) e. NN |
13 |
12
|
nncni |
|- ( _lcm ` ( 1 ... N ) ) e. CC |
14 |
13
|
a1i |
|- ( ph -> ( _lcm ` ( 1 ... N ) ) e. CC ) |
15 |
|
elfzelz |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. ZZ ) |
16 |
|
m1expcl |
|- ( k e. ZZ -> ( -u 1 ^ k ) e. ZZ ) |
17 |
15 16
|
syl |
|- ( k e. ( 0 ... ( N - M ) ) -> ( -u 1 ^ k ) e. ZZ ) |
18 |
17
|
zcnd |
|- ( k e. ( 0 ... ( N - M ) ) -> ( -u 1 ^ k ) e. CC ) |
19 |
18
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u 1 ^ k ) e. CC ) |
20 |
|
bccl2 |
|- ( k e. ( 0 ... ( N - M ) ) -> ( ( N - M ) _C k ) e. NN ) |
21 |
20
|
nncnd |
|- ( k e. ( 0 ... ( N - M ) ) -> ( ( N - M ) _C k ) e. CC ) |
22 |
21
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. CC ) |
23 |
19 22
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) e. CC ) |
24 |
3
|
nncnd |
|- ( ph -> M e. CC ) |
25 |
24
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> M e. CC ) |
26 |
15
|
zcnd |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. CC ) |
27 |
26
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> k e. CC ) |
28 |
25 27
|
addcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) e. CC ) |
29 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - M ) ) -> k e. NN0 ) |
30 |
|
nnnn0addcl |
|- ( ( M e. NN /\ k e. NN0 ) -> ( M + k ) e. NN ) |
31 |
29 30
|
sylan2 |
|- ( ( M e. NN /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) e. NN ) |
32 |
3 31
|
sylan |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) e. NN ) |
33 |
32
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( M + k ) =/= 0 ) |
34 |
28 33
|
reccld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( 1 / ( M + k ) ) e. CC ) |
35 |
23 34
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) e. CC ) |
36 |
7 14 35
|
fsummulc2 |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( _lcm ` ( 1 ... N ) ) x. ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) ) |
37 |
6 36
|
eqtrd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( _lcm ` ( 1 ... N ) ) x. ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) ) |
38 |
13
|
a1i |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( _lcm ` ( 1 ... N ) ) e. CC ) |
39 |
38 23 28 33
|
lcmineqlem5 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( _lcm ` ( 1 ... N ) ) x. ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) = ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) ) ) |
40 |
39
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 0 ... ( N - M ) ) ( ( _lcm ` ( 1 ... N ) ) x. ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( 1 / ( M + k ) ) ) ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) ) ) |
41 |
37 40
|
eqtrd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) = sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) ) ) |
42 |
17
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( -u 1 ^ k ) e. ZZ ) |
43 |
20
|
nnzd |
|- ( k e. ( 0 ... ( N - M ) ) -> ( ( N - M ) _C k ) e. ZZ ) |
44 |
43
|
adantl |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( N - M ) _C k ) e. ZZ ) |
45 |
42 44
|
zmulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) e. ZZ ) |
46 |
2
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> N e. NN ) |
47 |
3
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> M e. NN ) |
48 |
4
|
adantr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> M <_ N ) |
49 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> k e. ( 0 ... ( N - M ) ) ) |
50 |
46 47 48 49
|
lcmineqlem4 |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) e. ZZ ) |
51 |
45 50
|
zmulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - M ) ) ) -> ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) ) e. ZZ ) |
52 |
7 51
|
fsumzcl |
|- ( ph -> sum_ k e. ( 0 ... ( N - M ) ) ( ( ( -u 1 ^ k ) x. ( ( N - M ) _C k ) ) x. ( ( _lcm ` ( 1 ... N ) ) / ( M + k ) ) ) e. ZZ ) |
53 |
41 52
|
eqeltrd |
|- ( ph -> ( ( _lcm ` ( 1 ... N ) ) x. F ) e. ZZ ) |