| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem6.1 |
|
| 2 |
|
lcmineqlem6.2 |
|
| 3 |
|
lcmineqlem6.3 |
|
| 4 |
|
lcmineqlem6.4 |
|
| 5 |
1 2 3 4
|
lcmineqlem3 |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
fzfid |
|
| 8 |
|
fz1ssnn |
|
| 9 |
|
fzfi |
|
| 10 |
8 9
|
pm3.2i |
|
| 11 |
|
lcmfnncl |
|
| 12 |
10 11
|
ax-mp |
|
| 13 |
12
|
nncni |
|
| 14 |
13
|
a1i |
|
| 15 |
|
elfzelz |
|
| 16 |
|
m1expcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
zcnd |
|
| 19 |
18
|
adantl |
|
| 20 |
|
bccl2 |
|
| 21 |
20
|
nncnd |
|
| 22 |
21
|
adantl |
|
| 23 |
19 22
|
mulcld |
|
| 24 |
3
|
nncnd |
|
| 25 |
24
|
adantr |
|
| 26 |
15
|
zcnd |
|
| 27 |
26
|
adantl |
|
| 28 |
25 27
|
addcld |
|
| 29 |
|
elfznn0 |
|
| 30 |
|
nnnn0addcl |
|
| 31 |
29 30
|
sylan2 |
|
| 32 |
3 31
|
sylan |
|
| 33 |
32
|
nnne0d |
|
| 34 |
28 33
|
reccld |
|
| 35 |
23 34
|
mulcld |
|
| 36 |
7 14 35
|
fsummulc2 |
|
| 37 |
6 36
|
eqtrd |
|
| 38 |
13
|
a1i |
|
| 39 |
38 23 28 33
|
lcmineqlem5 |
|
| 40 |
39
|
sumeq2dv |
|
| 41 |
37 40
|
eqtrd |
|
| 42 |
17
|
adantl |
|
| 43 |
20
|
nnzd |
|
| 44 |
43
|
adantl |
|
| 45 |
42 44
|
zmulcld |
|
| 46 |
2
|
adantr |
|
| 47 |
3
|
adantr |
|
| 48 |
4
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
46 47 48 49
|
lcmineqlem4 |
|
| 51 |
45 50
|
zmulcld |
|
| 52 |
7 51
|
fsumzcl |
|
| 53 |
41 52
|
eqeltrd |
|