Metamath Proof Explorer


Theorem lcmineqlem6

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem6.1 F=01xM11xNMdx
lcmineqlem6.2 φN
lcmineqlem6.3 φM
lcmineqlem6.4 φMN
Assertion lcmineqlem6 φlcm_1NF

Proof

Step Hyp Ref Expression
1 lcmineqlem6.1 F=01xM11xNMdx
2 lcmineqlem6.2 φN
3 lcmineqlem6.3 φM
4 lcmineqlem6.4 φMN
5 1 2 3 4 lcmineqlem3 φF=k=0NM1k(NMk)1M+k
6 5 oveq2d φlcm_1NF=lcm_1Nk=0NM1k(NMk)1M+k
7 fzfid φ0NMFin
8 fz1ssnn 1N
9 fzfi 1NFin
10 8 9 pm3.2i 1N1NFin
11 lcmfnncl 1N1NFinlcm_1N
12 10 11 ax-mp lcm_1N
13 12 nncni lcm_1N
14 13 a1i φlcm_1N
15 elfzelz k0NMk
16 m1expcl k1k
17 15 16 syl k0NM1k
18 17 zcnd k0NM1k
19 18 adantl φk0NM1k
20 bccl2 k0NM(NMk)
21 20 nncnd k0NM(NMk)
22 21 adantl φk0NM(NMk)
23 19 22 mulcld φk0NM1k(NMk)
24 3 nncnd φM
25 24 adantr φk0NMM
26 15 zcnd k0NMk
27 26 adantl φk0NMk
28 25 27 addcld φk0NMM+k
29 elfznn0 k0NMk0
30 nnnn0addcl Mk0M+k
31 29 30 sylan2 Mk0NMM+k
32 3 31 sylan φk0NMM+k
33 32 nnne0d φk0NMM+k0
34 28 33 reccld φk0NM1M+k
35 23 34 mulcld φk0NM1k(NMk)1M+k
36 7 14 35 fsummulc2 φlcm_1Nk=0NM1k(NMk)1M+k=k=0NMlcm_1N1k(NMk)1M+k
37 6 36 eqtrd φlcm_1NF=k=0NMlcm_1N1k(NMk)1M+k
38 13 a1i φk0NMlcm_1N
39 38 23 28 33 lcmineqlem5 φk0NMlcm_1N1k(NMk)1M+k=1k(NMk)lcm_1NM+k
40 39 sumeq2dv φk=0NMlcm_1N1k(NMk)1M+k=k=0NM1k(NMk)lcm_1NM+k
41 37 40 eqtrd φlcm_1NF=k=0NM1k(NMk)lcm_1NM+k
42 17 adantl φk0NM1k
43 20 nnzd k0NM(NMk)
44 43 adantl φk0NM(NMk)
45 42 44 zmulcld φk0NM1k(NMk)
46 2 adantr φk0NMN
47 3 adantr φk0NMM
48 4 adantr φk0NMMN
49 simpr φk0NMk0NM
50 46 47 48 49 lcmineqlem4 φk0NMlcm_1NM+k
51 45 50 zmulcld φk0NM1k(NMk)lcm_1NM+k
52 7 51 fsumzcl φk=0NM1k(NMk)lcm_1NM+k
53 41 52 eqeltrd φlcm_1NF