Metamath Proof Explorer


Theorem fsumzcl

Description: Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)

Ref Expression
Hypotheses fsumcl.1 φAFin
fsumzcl.2 φkAB
Assertion fsumzcl φkAB

Proof

Step Hyp Ref Expression
1 fsumcl.1 φAFin
2 fsumzcl.2 φkAB
3 zsscn
4 3 a1i φ
5 zaddcl xyx+y
6 5 adantl φxyx+y
7 0zd φ0
8 4 6 1 2 7 fsumcllem φkAB