Metamath Proof Explorer


Theorem lcmineqlem5

Description: Technical lemma for reciprocal multiplication in deduction form. (Contributed by metakunt, 10-May-2024)

Ref Expression
Hypotheses lcmineqlem5.1 φA
lcmineqlem5.2 φB
lcmineqlem5.3 φC
lcmineqlem5.4 φC0
Assertion lcmineqlem5 φAB1C=BAC

Proof

Step Hyp Ref Expression
1 lcmineqlem5.1 φA
2 lcmineqlem5.2 φB
3 lcmineqlem5.3 φC
4 lcmineqlem5.4 φC0
5 3 4 reccld φ1C
6 1 2 5 mulassd φAB1C=AB1C
7 1 2 mulcomd φAB=BA
8 7 oveq1d φAB1C=BA1C
9 6 8 eqtr3d φAB1C=BA1C
10 2 1 5 mulassd φBA1C=BA1C
11 9 10 eqtrd φAB1C=BA1C
12 1 3 4 divrecd φAC=A1C
13 12 oveq2d φBAC=BA1C
14 11 13 eqtr4d φAB1C=BAC