Metamath Proof Explorer


Theorem lcmineqlem7

Description: Derivative of 1-x for chain rule application. (Contributed by metakunt, 12-May-2024)

Ref Expression
Assertion lcmineqlem7 dx1xdx=x1

Proof

Step Hyp Ref Expression
1 cnelprrecn
2 1 a1i
3 1cnd x1
4 0cnd x0
5 1cnd 1
6 2 5 dvmptc dx1dx=x0
7 simpr xx
8 2 dvmptid dxxdx=x1
9 2 3 4 6 7 3 8 dvmptsub dx1xdx=x01
10 df-neg 1=01
11 10 a1i 1=01
12 11 eqcomd 01=1
13 12 mpteq2dv x01=x1
14 9 13 eqtrd dx1xdx=x1
15 14 mptru dx1xdx=x1