Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Least common multiple inequality theorem
lcmineqlem7
Next ⟩
lcmineqlem8
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcmineqlem7
Description:
Derivative of 1-x for chain rule application.
(Contributed by
metakunt
, 12-May-2024)
Ref
Expression
Assertion
lcmineqlem7
⊢
d
x
∈
ℂ
1
−
x
d
ℂ
x
=
x
∈
ℂ
⟼
−
1
Proof
Step
Hyp
Ref
Expression
1
cnelprrecn
⊢
ℂ
∈
ℝ
ℂ
2
1
a1i
⊢
⊤
→
ℂ
∈
ℝ
ℂ
3
1cnd
⊢
⊤
∧
x
∈
ℂ
→
1
∈
ℂ
4
0cnd
⊢
⊤
∧
x
∈
ℂ
→
0
∈
ℂ
5
1cnd
⊢
⊤
→
1
∈
ℂ
6
2
5
dvmptc
⊢
⊤
→
d
x
∈
ℂ
1
d
ℂ
x
=
x
∈
ℂ
⟼
0
7
simpr
⊢
⊤
∧
x
∈
ℂ
→
x
∈
ℂ
8
2
dvmptid
⊢
⊤
→
d
x
∈
ℂ
x
d
ℂ
x
=
x
∈
ℂ
⟼
1
9
2
3
4
6
7
3
8
dvmptsub
⊢
⊤
→
d
x
∈
ℂ
1
−
x
d
ℂ
x
=
x
∈
ℂ
⟼
0
−
1
10
df-neg
⊢
−
1
=
0
−
1
11
10
a1i
⊢
⊤
→
−
1
=
0
−
1
12
11
eqcomd
⊢
⊤
→
0
−
1
=
−
1
13
12
mpteq2dv
⊢
⊤
→
x
∈
ℂ
⟼
0
−
1
=
x
∈
ℂ
⟼
−
1
14
9
13
eqtrd
⊢
⊤
→
d
x
∈
ℂ
1
−
x
d
ℂ
x
=
x
∈
ℂ
⟼
−
1
15
14
mptru
⊢
d
x
∈
ℂ
1
−
x
d
ℂ
x
=
x
∈
ℂ
⟼
−
1