Metamath Proof Explorer


Theorem dvmptid

Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis dvmptid.1 φS
Assertion dvmptid φdxSxdSx=xS1

Proof

Step Hyp Ref Expression
1 dvmptid.1 φS
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtopon TopOpenfldTopOn
4 toponmax TopOpenfldTopOnTopOpenfld
5 3 4 mp1i φTopOpenfld
6 recnprss SS
7 1 6 syl φS
8 df-ss SS=S
9 7 8 sylib φS=S
10 simpr φxx
11 1cnd φx1
12 mptresid I=xx
13 12 eqcomi xx=I
14 13 oveq2i dxxdx=DI
15 dvid DI=×1
16 fconstmpt ×1=x1
17 14 15 16 3eqtri dxxdx=x1
18 17 a1i φdxxdx=x1
19 2 1 5 9 10 11 18 dvmptres3 φdxSxdSx=xS1