Metamath Proof Explorer


Theorem dvmptres3

Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptres3.j J=TopOpenfld
dvmptres3.s φS
dvmptres3.x φXJ
dvmptres3.y φSX=Y
dvmptres3.a φxXA
dvmptres3.b φxXBV
dvmptres3.d φdxXAdx=xXB
Assertion dvmptres3 φdxYAdSx=xYB

Proof

Step Hyp Ref Expression
1 dvmptres3.j J=TopOpenfld
2 dvmptres3.s φS
3 dvmptres3.x φXJ
4 dvmptres3.y φSX=Y
5 dvmptres3.a φxXA
6 dvmptres3.b φxXBV
7 dvmptres3.d φdxXAdx=xXB
8 5 fmpttd φxXA:X
9 7 dmeqd φdomdxXAdx=domxXB
10 eqid xXB=xXB
11 10 6 dmmptd φdomxXB=X
12 9 11 eqtrd φdomdxXAdx=X
13 1 dvres3a SxXA:XXJdomdxXAdx=XSDxXAS=dxXAdxS
14 2 8 3 12 13 syl22anc φSDxXAS=dxXAdxS
15 rescom xXAXS=xXASX
16 resres xXASX=xXASX
17 15 16 eqtri xXAXS=xXASX
18 4 reseq2d φxXASX=xXAY
19 17 18 eqtrid φxXAXS=xXAY
20 ffn xXA:XxXAFnX
21 fnresdm xXAFnXxXAX=xXA
22 8 20 21 3syl φxXAX=xXA
23 22 reseq1d φxXAXS=xXAS
24 inss2 SXX
25 4 24 eqsstrrdi φYX
26 25 resmptd φxXAY=xYA
27 19 23 26 3eqtr3d φxXAS=xYA
28 27 oveq2d φSDxXAS=dxYAdSx
29 rescom xXBXS=xXBSX
30 resres xXBSX=xXBSX
31 29 30 eqtri xXBXS=xXBSX
32 4 reseq2d φxXBSX=xXBY
33 31 32 eqtrid φxXBXS=xXBY
34 6 ralrimiva φxXBV
35 10 fnmpt xXBVxXBFnX
36 fnresdm xXBFnXxXBX=xXB
37 34 35 36 3syl φxXBX=xXB
38 37 7 eqtr4d φxXBX=dxXAdx
39 38 reseq1d φxXBXS=dxXAdxS
40 25 resmptd φxXBY=xYB
41 33 39 40 3eqtr3d φdxXAdxS=xYB
42 14 28 41 3eqtr3d φdxYAdSx=xYB