Metamath Proof Explorer


Theorem dvmptc

Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptid.1 φS
dvmptc.2 φA
Assertion dvmptc φdxSAdSx=xS0

Proof

Step Hyp Ref Expression
1 dvmptid.1 φS
2 dvmptc.2 φA
3 eqid TopOpenfld=TopOpenfld
4 3 cnfldtopon TopOpenfldTopOn
5 toponmax TopOpenfldTopOnTopOpenfld
6 4 5 mp1i φTopOpenfld
7 recnprss SS
8 1 7 syl φS
9 df-ss SS=S
10 8 9 sylib φS=S
11 2 adantr φxA
12 0cnd φx0
13 dvconst AD×A=×0
14 2 13 syl φD×A=×0
15 fconstmpt ×A=xA
16 15 oveq2i D×A=dxAdx
17 fconstmpt ×0=x0
18 14 16 17 3eqtr3g φdxAdx=x0
19 3 1 6 10 11 12 18 dvmptres3 φdxSAdSx=xS0