Metamath Proof Explorer


Definition df-lcmf

Description: Define the _lcm function on a set of integers. (Contributed by AV, 21-Aug-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion df-lcmf lcm_=z𝒫if0z0supn|mzmn<

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcmf classlcm_
1 vz setvarz
2 cz class
3 2 cpw class𝒫
4 cc0 class0
5 1 cv setvarz
6 4 5 wcel wff0z
7 vn setvarn
8 cn class
9 vm setvarm
10 9 cv setvarm
11 cdvds class
12 7 cv setvarn
13 10 12 11 wbr wffmn
14 13 9 5 wral wffmzmn
15 14 7 8 crab classn|mzmn
16 cr class
17 clt class<
18 15 16 17 cinf classsupn|mzmn<
19 6 4 18 cif classif0z0supn|mzmn<
20 1 3 19 cmpt classz𝒫if0z0supn|mzmn<
21 0 20 wceq wfflcm_=z𝒫if0z0supn|mzmn<