| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clcmf |
⊢ lcm |
| 1 |
|
vz |
⊢ 𝑧 |
| 2 |
|
cz |
⊢ ℤ |
| 3 |
2
|
cpw |
⊢ 𝒫 ℤ |
| 4 |
|
cc0 |
⊢ 0 |
| 5 |
1
|
cv |
⊢ 𝑧 |
| 6 |
4 5
|
wcel |
⊢ 0 ∈ 𝑧 |
| 7 |
|
vn |
⊢ 𝑛 |
| 8 |
|
cn |
⊢ ℕ |
| 9 |
|
vm |
⊢ 𝑚 |
| 10 |
9
|
cv |
⊢ 𝑚 |
| 11 |
|
cdvds |
⊢ ∥ |
| 12 |
7
|
cv |
⊢ 𝑛 |
| 13 |
10 12 11
|
wbr |
⊢ 𝑚 ∥ 𝑛 |
| 14 |
13 9 5
|
wral |
⊢ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 |
| 15 |
14 7 8
|
crab |
⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } |
| 16 |
|
cr |
⊢ ℝ |
| 17 |
|
clt |
⊢ < |
| 18 |
15 16 17
|
cinf |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) |
| 19 |
6 4 18
|
cif |
⊢ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 20 |
1 3 19
|
cmpt |
⊢ ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 21 |
0 20
|
wceq |
⊢ lcm = ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |