Metamath Proof Explorer


Theorem bccl2

Description: A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006) (Revised by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bccl2
|- ( K e. ( 0 ... N ) -> ( N _C K ) e. NN )

Proof

Step Hyp Ref Expression
1 elfz3nn0
 |-  ( K e. ( 0 ... N ) -> N e. NN0 )
2 elfzelz
 |-  ( K e. ( 0 ... N ) -> K e. ZZ )
3 bccl
 |-  ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. NN0 )
5 bcrpcl
 |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. RR+ )
6 5 rpgt0d
 |-  ( K e. ( 0 ... N ) -> 0 < ( N _C K ) )
7 elnnnn0b
 |-  ( ( N _C K ) e. NN <-> ( ( N _C K ) e. NN0 /\ 0 < ( N _C K ) ) )
8 4 6 7 sylanbrc
 |-  ( K e. ( 0 ... N ) -> ( N _C K ) e. NN )