Step |
Hyp |
Ref |
Expression |
1 |
|
lcmineqlem2.1 |
|
2 |
|
lcmineqlem2.2 |
|
3 |
|
lcmineqlem2.3 |
|
4 |
|
lcmineqlem2.4 |
|
5 |
1 2 3 4
|
lcmineqlem1 |
|
6 |
|
eqid |
|
7 |
|
fzfid |
|
8 |
|
0red |
|
9 |
|
1red |
|
10 |
|
unitsscn |
|
11 |
|
resmpt |
|
12 |
10 11
|
ax-mp |
|
13 |
|
nnm1nn0 |
|
14 |
|
expcncf |
|
15 |
|
rescncf |
|
16 |
10 15
|
ax-mp |
|
17 |
3 13 14 16
|
4syl |
|
18 |
12 17
|
eqeltrrid |
|
19 |
|
elfznn0 |
|
20 |
|
neg1cn |
|
21 |
|
expcl |
|
22 |
20 21
|
mpan |
|
23 |
19 22
|
syl |
|
24 |
23
|
adantl |
|
25 |
3
|
nnnn0d |
|
26 |
2
|
nnnn0d |
|
27 |
|
nn0sub |
|
28 |
25 26 27
|
syl2anc |
|
29 |
4 28
|
mpbid |
|
30 |
|
nn0z |
|
31 |
19 30
|
syl |
|
32 |
|
bccl |
|
33 |
31 32
|
sylan2 |
|
34 |
29 33
|
sylan |
|
35 |
34
|
nn0cnd |
|
36 |
24 35
|
mulcld |
|
37 |
|
resmpt |
|
38 |
10 37
|
ax-mp |
|
39 |
|
expcncf |
|
40 |
19 39
|
syl |
|
41 |
|
rescncf |
|
42 |
10 41
|
ax-mp |
|
43 |
40 42
|
syl |
|
44 |
38 43
|
eqeltrrid |
|
45 |
44
|
adantl |
|
46 |
6 7 8 9 18 36 45
|
3factsumint |
|
47 |
5 46
|
eqtrd |
|