| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmineqlem2.1 |
|
| 2 |
|
lcmineqlem2.2 |
|
| 3 |
|
lcmineqlem2.3 |
|
| 4 |
|
lcmineqlem2.4 |
|
| 5 |
1 2 3 4
|
lcmineqlem1 |
|
| 6 |
|
eqid |
|
| 7 |
|
fzfid |
|
| 8 |
|
0red |
|
| 9 |
|
1red |
|
| 10 |
|
unitsscn |
|
| 11 |
|
resmpt |
|
| 12 |
10 11
|
ax-mp |
|
| 13 |
|
nnm1nn0 |
|
| 14 |
|
expcncf |
|
| 15 |
|
rescncf |
|
| 16 |
10 15
|
ax-mp |
|
| 17 |
3 13 14 16
|
4syl |
|
| 18 |
12 17
|
eqeltrrid |
|
| 19 |
|
elfznn0 |
|
| 20 |
|
neg1cn |
|
| 21 |
|
expcl |
|
| 22 |
20 21
|
mpan |
|
| 23 |
19 22
|
syl |
|
| 24 |
23
|
adantl |
|
| 25 |
3
|
nnnn0d |
|
| 26 |
2
|
nnnn0d |
|
| 27 |
|
nn0sub |
|
| 28 |
25 26 27
|
syl2anc |
|
| 29 |
4 28
|
mpbid |
|
| 30 |
|
nn0z |
|
| 31 |
19 30
|
syl |
|
| 32 |
|
bccl |
|
| 33 |
31 32
|
sylan2 |
|
| 34 |
29 33
|
sylan |
|
| 35 |
34
|
nn0cnd |
|
| 36 |
24 35
|
mulcld |
|
| 37 |
|
resmpt |
|
| 38 |
10 37
|
ax-mp |
|
| 39 |
|
expcncf |
|
| 40 |
19 39
|
syl |
|
| 41 |
|
rescncf |
|
| 42 |
10 41
|
ax-mp |
|
| 43 |
40 42
|
syl |
|
| 44 |
38 43
|
eqeltrrid |
|
| 45 |
44
|
adantl |
|
| 46 |
6 7 8 9 18 36 45
|
3factsumint |
|
| 47 |
5 46
|
eqtrd |
|