Metamath Proof Explorer


Theorem lcmineqlem2

Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 29-Apr-2024)

Ref Expression
Hypotheses lcmineqlem2.1 F = 0 1 x M 1 1 x N M dx
lcmineqlem2.2 φ N
lcmineqlem2.3 φ M
lcmineqlem2.4 φ M N
Assertion lcmineqlem2 φ F = k = 0 N M 1 k ( N M k) 0 1 x M 1 x k dx

Proof

Step Hyp Ref Expression
1 lcmineqlem2.1 F = 0 1 x M 1 1 x N M dx
2 lcmineqlem2.2 φ N
3 lcmineqlem2.3 φ M
4 lcmineqlem2.4 φ M N
5 1 2 3 4 lcmineqlem1 φ F = 0 1 x M 1 k = 0 N M 1 k ( N M k) x k dx
6 eqid 0 1 = 0 1
7 fzfid φ 0 N M Fin
8 0red φ 0
9 1red φ 1
10 unitsscn 0 1
11 resmpt 0 1 x x M 1 0 1 = x 0 1 x M 1
12 10 11 ax-mp x x M 1 0 1 = x 0 1 x M 1
13 nnm1nn0 M M 1 0
14 expcncf M 1 0 x x M 1 : cn
15 rescncf 0 1 x x M 1 : cn x x M 1 0 1 : 0 1 cn
16 10 15 ax-mp x x M 1 : cn x x M 1 0 1 : 0 1 cn
17 3 13 14 16 4syl φ x x M 1 0 1 : 0 1 cn
18 12 17 eqeltrrid φ x 0 1 x M 1 : 0 1 cn
19 elfznn0 k 0 N M k 0
20 neg1cn 1
21 expcl 1 k 0 1 k
22 20 21 mpan k 0 1 k
23 19 22 syl k 0 N M 1 k
24 23 adantl φ k 0 N M 1 k
25 3 nnnn0d φ M 0
26 2 nnnn0d φ N 0
27 nn0sub M 0 N 0 M N N M 0
28 25 26 27 syl2anc φ M N N M 0
29 4 28 mpbid φ N M 0
30 nn0z k 0 k
31 19 30 syl k 0 N M k
32 bccl N M 0 k ( N M k) 0
33 31 32 sylan2 N M 0 k 0 N M ( N M k) 0
34 29 33 sylan φ k 0 N M ( N M k) 0
35 34 nn0cnd φ k 0 N M ( N M k)
36 24 35 mulcld φ k 0 N M 1 k ( N M k)
37 resmpt 0 1 x x k 0 1 = x 0 1 x k
38 10 37 ax-mp x x k 0 1 = x 0 1 x k
39 expcncf k 0 x x k : cn
40 19 39 syl k 0 N M x x k : cn
41 rescncf 0 1 x x k : cn x x k 0 1 : 0 1 cn
42 10 41 ax-mp x x k : cn x x k 0 1 : 0 1 cn
43 40 42 syl k 0 N M x x k 0 1 : 0 1 cn
44 38 43 eqeltrrid k 0 N M x 0 1 x k : 0 1 cn
45 44 adantl φ k 0 N M x 0 1 x k : 0 1 cn
46 6 7 8 9 18 36 45 3factsumint φ 0 1 x M 1 k = 0 N M 1 k ( N M k) x k dx = k = 0 N M 1 k ( N M k) 0 1 x M 1 x k dx
47 5 46 eqtrd φ F = k = 0 N M 1 k ( N M k) 0 1 x M 1 x k dx