Metamath Proof Explorer


Theorem 3factsumint

Description: Helpful equation for lcm inequality proof. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint.1 A = L U
3factsumint.2 φ B Fin
3factsumint.3 φ L
3factsumint.4 φ U
3factsumint.5 φ x A F : A cn
3factsumint.6 φ k B G
3factsumint.7 φ k B x A H : A cn
Assertion 3factsumint φ A F k B G H dx = k B G A F H dx

Proof

Step Hyp Ref Expression
1 3factsumint.1 A = L U
2 3factsumint.2 φ B Fin
3 3factsumint.3 φ L
4 3factsumint.4 φ U
5 3factsumint.5 φ x A F : A cn
6 3factsumint.6 φ k B G
7 3factsumint.7 φ k B x A H : A cn
8 cncff x A F : A cn x A F : A
9 5 8 syl φ x A F : A
10 eqid x A F = x A F
11 10 fmpt x A F x A F : A
12 9 11 sylibr φ x A F
13 12 r19.21bi φ x A F
14 cncff x A H : A cn x A H : A
15 7 14 syl φ k B x A H : A
16 eqid x A H = x A H
17 16 fmpt x A H x A H : A
18 15 17 sylibr φ k B x A H
19 18 r19.21bi φ k B x A H
20 anass φ k B x A φ k B x A
21 ancom k B x A x A k B
22 21 anbi2i φ k B x A φ x A k B
23 20 22 bitri φ k B x A φ x A k B
24 23 imbi1i φ k B x A H φ x A k B H
25 19 24 mpbi φ x A k B H
26 2 13 6 25 3factsumint4 φ A k B F G H dx = A F k B G H dx
27 1 2 3 4 13 5 6 25 7 3factsumint1 φ A k B F G H dx = k B A F G H dx
28 26 27 eqtr3d φ A F k B G H dx = k B A F G H dx
29 13 6 25 3factsumint2 φ k B A F G H dx = k B A G F H dx
30 1 3 4 13 5 6 25 7 3factsumint3 φ k B A G F H dx = k B G A F H dx
31 28 29 30 3eqtrd φ A F k B G H dx = k B G A F H dx