Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint.1 |
⊢ 𝐴 = ( 𝐿 [,] 𝑈 ) |
2 |
|
3factsumint.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
3factsumint.3 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
4 |
|
3factsumint.4 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
5 |
|
3factsumint.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
6 |
|
3factsumint.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
7 |
|
3factsumint.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
8 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) : 𝐴 ⟶ ℂ ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) : 𝐴 ⟶ ℂ ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) |
11 |
10
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ℂ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) : 𝐴 ⟶ ℂ ) |
12 |
9 11
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ℂ ) |
13 |
12
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
14 |
|
cncff |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) : 𝐴 ⟶ ℂ ) |
15 |
7 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) : 𝐴 ⟶ ℂ ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) |
17 |
16
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐻 ∈ ℂ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) : 𝐴 ⟶ ℂ ) |
18 |
15 17
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐻 ∈ ℂ ) |
19 |
18
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) |
20 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
21 |
|
ancom |
⊢ ( ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) |
22 |
21
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
23 |
20 22
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
24 |
23
|
imbi1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) ) |
25 |
19 24
|
mpbi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) |
26 |
2 13 6 25
|
3factsumint4 |
⊢ ( 𝜑 → ∫ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = ∫ 𝐴 ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) d 𝑥 ) |
27 |
1 2 3 4 13 5 6 25 7
|
3factsumint1 |
⊢ ( 𝜑 → ∫ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 ) |
28 |
26 27
|
eqtr3d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 ) |
29 |
13 6 25
|
3factsumint2 |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 ) |
30 |
1 3 4 13 5 6 25 7
|
3factsumint3 |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ( 𝐺 · ∫ 𝐴 ( 𝐹 · 𝐻 ) d 𝑥 ) ) |
31 |
28 29 30
|
3eqtrd |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ( 𝐺 · ∫ 𝐴 ( 𝐹 · 𝐻 ) d 𝑥 ) ) |