| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3factsumint3.1 |
⊢ 𝐴 = ( 𝐿 [,] 𝑈 ) |
| 2 |
|
3factsumint3.2 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 3 |
|
3factsumint3.3 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 4 |
|
3factsumint3.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
| 5 |
|
3factsumint3.5 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 6 |
|
3factsumint3.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
| 7 |
|
3factsumint3.7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) |
| 8 |
|
3factsumint3.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐻 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 9 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
| 10 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 11 |
10
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 12 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 13 |
12
|
bicomi |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 14 |
11 13
|
bitri |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 15 |
14
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) ) |
| 16 |
7 15
|
mpbi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) |
| 17 |
9 16
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 · 𝐻 ) ∈ ℂ ) |
| 18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐿 ∈ ℝ ) |
| 19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑈 ∈ ℝ ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐹 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 21 |
20 8
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · 𝐻 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 22 |
1
|
oveq1i |
⊢ ( 𝐴 –cn→ ℂ ) = ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) |
| 23 |
21 22
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · 𝐻 ) ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) |
| 24 |
|
cnicciblnc |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · 𝐻 ) ) ∈ ( ( 𝐿 [,] 𝑈 ) –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · 𝐻 ) ) ∈ 𝐿1 ) |
| 25 |
18 19 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 · 𝐻 ) ) ∈ 𝐿1 ) |
| 26 |
6 17 25
|
itgmulc2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐺 · ∫ 𝐴 ( 𝐹 · 𝐻 ) d 𝑥 ) = ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 ) |
| 27 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 = ( 𝐺 · ∫ 𝐴 ( 𝐹 · 𝐻 ) d 𝑥 ) ) |
| 28 |
27
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ( 𝐺 · ∫ 𝐴 ( 𝐹 · 𝐻 ) d 𝑥 ) ) |