Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint4.1 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
2 |
|
3factsumint4.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
3 |
|
3factsumint4.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
4 |
|
3factsumint4.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
6 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
7 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
8 |
7
|
bicomi |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) ) |
9 |
8
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐻 ∈ ℂ ) ) |
10 |
4 9
|
mpbi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐻 ∈ ℂ ) |
11 |
6 10
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → ( 𝐺 · 𝐻 ) ∈ ℂ ) |
12 |
5 2 11
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) = Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) = ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) ) |
14 |
13
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 Σ 𝑘 ∈ 𝐵 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = ∫ 𝐴 ( 𝐹 · Σ 𝑘 ∈ 𝐵 ( 𝐺 · 𝐻 ) ) d 𝑥 ) |