Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| Assertion | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐶 ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) |
| 3 | itgeq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑥 ) |