Step |
Hyp |
Ref |
Expression |
1 |
|
itgmpt.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
3 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
5 |
2 3 4
|
cbvitg |
⊢ ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) d 𝑦 = ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
7
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
9 |
6 1 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
10 |
9
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) |
11 |
5 10
|
eqtr2id |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) d 𝑦 ) |