Metamath Proof Explorer


Theorem itgmpt

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Hypothesis itgmpt.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion itgmpt ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) d 𝑦 )

Proof

Step Hyp Ref Expression
1 itgmpt.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 fveq2 ( 𝑦 = 𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
3 nffvmpt1 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 )
4 nfcv 𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 )
5 2 3 4 cbvitg 𝐴 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) d 𝑦 = ∫ 𝐴 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) d 𝑥
6 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
7 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
8 7 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
9 6 1 8 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
10 9 itgeq2dv ( 𝜑 → ∫ 𝐴 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 )
11 5 10 eqtr2id ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) d 𝑦 )