| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgmpt.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 2 |
|
fveq2 |
|- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
| 3 |
|
nffvmpt1 |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
| 4 |
|
nfcv |
|- F/_ y ( ( x e. A |-> B ) ` x ) |
| 5 |
2 3 4
|
cbvitg |
|- S. A ( ( x e. A |-> B ) ` y ) _d y = S. A ( ( x e. A |-> B ) ` x ) _d x |
| 6 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 7 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 8 |
7
|
fvmpt2 |
|- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 9 |
6 1 8
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 10 |
9
|
itgeq2dv |
|- ( ph -> S. A ( ( x e. A |-> B ) ` x ) _d x = S. A B _d x ) |
| 11 |
5 10
|
eqtr2id |
|- ( ph -> S. A B _d x = S. A ( ( x e. A |-> B ) ` y ) _d y ) |