Metamath Proof Explorer


Theorem 3factsumint4

Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024)

Ref Expression
Hypotheses 3factsumint4.1
|- ( ph -> B e. Fin )
3factsumint4.2
|- ( ( ph /\ x e. A ) -> F e. CC )
3factsumint4.3
|- ( ( ph /\ k e. B ) -> G e. CC )
3factsumint4.4
|- ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC )
Assertion 3factsumint4
|- ( ph -> S. A sum_ k e. B ( F x. ( G x. H ) ) _d x = S. A ( F x. sum_ k e. B ( G x. H ) ) _d x )

Proof

Step Hyp Ref Expression
1 3factsumint4.1
 |-  ( ph -> B e. Fin )
2 3factsumint4.2
 |-  ( ( ph /\ x e. A ) -> F e. CC )
3 3factsumint4.3
 |-  ( ( ph /\ k e. B ) -> G e. CC )
4 3factsumint4.4
 |-  ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC )
5 1 adantr
 |-  ( ( ph /\ x e. A ) -> B e. Fin )
6 3 adantlr
 |-  ( ( ( ph /\ x e. A ) /\ k e. B ) -> G e. CC )
7 anass
 |-  ( ( ( ph /\ x e. A ) /\ k e. B ) <-> ( ph /\ ( x e. A /\ k e. B ) ) )
8 7 bicomi
 |-  ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ( ph /\ x e. A ) /\ k e. B ) )
9 8 imbi1i
 |-  ( ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) <-> ( ( ( ph /\ x e. A ) /\ k e. B ) -> H e. CC ) )
10 4 9 mpbi
 |-  ( ( ( ph /\ x e. A ) /\ k e. B ) -> H e. CC )
11 6 10 mulcld
 |-  ( ( ( ph /\ x e. A ) /\ k e. B ) -> ( G x. H ) e. CC )
12 5 2 11 fsummulc2
 |-  ( ( ph /\ x e. A ) -> ( F x. sum_ k e. B ( G x. H ) ) = sum_ k e. B ( F x. ( G x. H ) ) )
13 12 eqcomd
 |-  ( ( ph /\ x e. A ) -> sum_ k e. B ( F x. ( G x. H ) ) = ( F x. sum_ k e. B ( G x. H ) ) )
14 13 itgeq2dv
 |-  ( ph -> S. A sum_ k e. B ( F x. ( G x. H ) ) _d x = S. A ( F x. sum_ k e. B ( G x. H ) ) _d x )