Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint4.1 |
|- ( ph -> B e. Fin ) |
2 |
|
3factsumint4.2 |
|- ( ( ph /\ x e. A ) -> F e. CC ) |
3 |
|
3factsumint4.3 |
|- ( ( ph /\ k e. B ) -> G e. CC ) |
4 |
|
3factsumint4.4 |
|- ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) |
5 |
1
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. Fin ) |
6 |
3
|
adantlr |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> G e. CC ) |
7 |
|
anass |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) <-> ( ph /\ ( x e. A /\ k e. B ) ) ) |
8 |
7
|
bicomi |
|- ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ( ph /\ x e. A ) /\ k e. B ) ) |
9 |
8
|
imbi1i |
|- ( ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) <-> ( ( ( ph /\ x e. A ) /\ k e. B ) -> H e. CC ) ) |
10 |
4 9
|
mpbi |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> H e. CC ) |
11 |
6 10
|
mulcld |
|- ( ( ( ph /\ x e. A ) /\ k e. B ) -> ( G x. H ) e. CC ) |
12 |
5 2 11
|
fsummulc2 |
|- ( ( ph /\ x e. A ) -> ( F x. sum_ k e. B ( G x. H ) ) = sum_ k e. B ( F x. ( G x. H ) ) ) |
13 |
12
|
eqcomd |
|- ( ( ph /\ x e. A ) -> sum_ k e. B ( F x. ( G x. H ) ) = ( F x. sum_ k e. B ( G x. H ) ) ) |
14 |
13
|
itgeq2dv |
|- ( ph -> S. A sum_ k e. B ( F x. ( G x. H ) ) _d x = S. A ( F x. sum_ k e. B ( G x. H ) ) _d x ) |