Step |
Hyp |
Ref |
Expression |
1 |
|
3factsumint3.1 |
|- A = ( L [,] U ) |
2 |
|
3factsumint3.2 |
|- ( ph -> L e. RR ) |
3 |
|
3factsumint3.3 |
|- ( ph -> U e. RR ) |
4 |
|
3factsumint3.4 |
|- ( ( ph /\ x e. A ) -> F e. CC ) |
5 |
|
3factsumint3.5 |
|- ( ph -> ( x e. A |-> F ) e. ( A -cn-> CC ) ) |
6 |
|
3factsumint3.6 |
|- ( ( ph /\ k e. B ) -> G e. CC ) |
7 |
|
3factsumint3.7 |
|- ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) |
8 |
|
3factsumint3.8 |
|- ( ( ph /\ k e. B ) -> ( x e. A |-> H ) e. ( A -cn-> CC ) ) |
9 |
4
|
adantlr |
|- ( ( ( ph /\ k e. B ) /\ x e. A ) -> F e. CC ) |
10 |
|
ancom |
|- ( ( x e. A /\ k e. B ) <-> ( k e. B /\ x e. A ) ) |
11 |
10
|
anbi2i |
|- ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ph /\ ( k e. B /\ x e. A ) ) ) |
12 |
|
anass |
|- ( ( ( ph /\ k e. B ) /\ x e. A ) <-> ( ph /\ ( k e. B /\ x e. A ) ) ) |
13 |
12
|
bicomi |
|- ( ( ph /\ ( k e. B /\ x e. A ) ) <-> ( ( ph /\ k e. B ) /\ x e. A ) ) |
14 |
11 13
|
bitri |
|- ( ( ph /\ ( x e. A /\ k e. B ) ) <-> ( ( ph /\ k e. B ) /\ x e. A ) ) |
15 |
14
|
imbi1i |
|- ( ( ( ph /\ ( x e. A /\ k e. B ) ) -> H e. CC ) <-> ( ( ( ph /\ k e. B ) /\ x e. A ) -> H e. CC ) ) |
16 |
7 15
|
mpbi |
|- ( ( ( ph /\ k e. B ) /\ x e. A ) -> H e. CC ) |
17 |
9 16
|
mulcld |
|- ( ( ( ph /\ k e. B ) /\ x e. A ) -> ( F x. H ) e. CC ) |
18 |
2
|
adantr |
|- ( ( ph /\ k e. B ) -> L e. RR ) |
19 |
3
|
adantr |
|- ( ( ph /\ k e. B ) -> U e. RR ) |
20 |
5
|
adantr |
|- ( ( ph /\ k e. B ) -> ( x e. A |-> F ) e. ( A -cn-> CC ) ) |
21 |
20 8
|
mulcncf |
|- ( ( ph /\ k e. B ) -> ( x e. A |-> ( F x. H ) ) e. ( A -cn-> CC ) ) |
22 |
1
|
oveq1i |
|- ( A -cn-> CC ) = ( ( L [,] U ) -cn-> CC ) |
23 |
21 22
|
eleqtrdi |
|- ( ( ph /\ k e. B ) -> ( x e. A |-> ( F x. H ) ) e. ( ( L [,] U ) -cn-> CC ) ) |
24 |
|
cnicciblnc |
|- ( ( L e. RR /\ U e. RR /\ ( x e. A |-> ( F x. H ) ) e. ( ( L [,] U ) -cn-> CC ) ) -> ( x e. A |-> ( F x. H ) ) e. L^1 ) |
25 |
18 19 23 24
|
syl3anc |
|- ( ( ph /\ k e. B ) -> ( x e. A |-> ( F x. H ) ) e. L^1 ) |
26 |
6 17 25
|
itgmulc2 |
|- ( ( ph /\ k e. B ) -> ( G x. S. A ( F x. H ) _d x ) = S. A ( G x. ( F x. H ) ) _d x ) |
27 |
26
|
eqcomd |
|- ( ( ph /\ k e. B ) -> S. A ( G x. ( F x. H ) ) _d x = ( G x. S. A ( F x. H ) _d x ) ) |
28 |
27
|
sumeq2dv |
|- ( ph -> sum_ k e. B S. A ( G x. ( F x. H ) ) _d x = sum_ k e. B ( G x. S. A ( F x. H ) _d x ) ) |