| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3factsumint2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
| 2 |
|
3factsumint2.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐺 ∈ ℂ ) |
| 3 |
|
3factsumint2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) |
| 4 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ℂ ) |
| 5 |
2
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 ∈ ℂ ) |
| 6 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
| 7 |
6
|
anbi2i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 8 |
|
anass |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 9 |
8
|
bicomi |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 10 |
7 9
|
bitri |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 11 |
10
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐻 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) ) |
| 12 |
3 11
|
mpbi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ∈ ℂ ) |
| 13 |
4 5 12
|
mul12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 · ( 𝐺 · 𝐻 ) ) = ( 𝐺 · ( 𝐹 · 𝐻 ) ) ) |
| 14 |
13
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 ) |
| 15 |
14
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐹 · ( 𝐺 · 𝐻 ) ) d 𝑥 = Σ 𝑘 ∈ 𝐵 ∫ 𝐴 ( 𝐺 · ( 𝐹 · 𝐻 ) ) d 𝑥 ) |